
Chapter 29 Solutions 

29.1 The Biot-Savart Law tells us 

�⃑� =
𝜇0𝐼

4𝜋
∫

𝑑𝑠 × �̂�

𝑟2

𝑓

𝑖

 

�⃑� =
𝜇0𝐼

4𝜋
∫

𝑑𝑠 × 𝑟 

𝑟3

𝑓

𝑖

 

�⃑� =
𝜇0𝐼

4𝜋
∫

(𝑑𝑥 𝑖̂) × (𝑥(−𝑖̂) − 𝑎𝑗̂)

(𝑥2 + 𝑎2)3/2

𝑓

𝑖

 

Do the cross-product before doing the integral. 

�⃑� =
𝜇0𝐼

4𝜋
(−�̂�)∫

𝑎 𝑑𝑥

(𝑥2 + 𝑎2)3/2

𝑓

𝑖

 

Form the picture at right, notice 

tan𝜽 =
𝑥

𝑎
 

𝑥 = 𝑎 tan 𝜃 

𝑑𝑥 = 𝑎 𝑑(tan 𝜃) 

𝑑𝑥 = 𝑎 sec2 𝜃  𝑑𝜃 

�⃑� =
𝜇0𝐼

4𝜋
(−�̂�)∫

𝑎 (𝑎 sec2 𝜃  𝑑𝜃)

((𝑎 tan 𝜃)2 + 𝑎2)3/2

𝑓

𝑖

 

�⃑� =
𝜇0𝐼

4𝜋
(−�̂�)∫

𝑎2  sec2 𝜃  𝑑𝜃

(𝑎2 tan2 𝜃 + 𝑎2)3/2

𝑓

𝑖

 

�⃑� =
𝜇0𝐼

4𝜋
(−�̂�)∫

𝑎2  sec2 𝜃  𝑑𝜃

(𝑎2)3/2(tan2 𝜃 + 1)3/2

𝑓

𝑖

 

One of our favorite trig identities is 

sin2 𝜃 + cos2 𝜃 = 1 

Divide all terms by cos2 𝜃. 

tan2 𝜃 + 1 =
1

cos2 𝜃
= sec2 𝜃 

 

�⃑� =
𝜇0𝐼

4𝜋
(−�̂�)∫

𝑎2  sec2 𝜃  𝑑𝜃

𝑎3(sec2 𝜃)3/2

𝑓

𝑖

 

�⃑� =
𝜇0𝐼

4𝜋𝑎
(−�̂�)∫

 sec2 𝜃  𝑑𝜃

sec3 𝜃

𝑓

𝑖

 

�⃑� =
𝜇0𝐼

4𝜋𝑎
(−�̂�)∫

𝑑𝜃

sec 𝜃

𝑓

𝑖

 

�⃑� =
𝜇0𝐼

4𝜋𝑎
(−�̂�)∫ cos 𝜃 𝑑𝜃

𝑓

𝑖

 

�⃑� =
𝜇0𝐼

4𝜋𝑎
(−�̂�) [sin 𝜃]

𝑖

𝑓

 

�⃑� =
𝜇0𝐼

4𝜋𝑎
(−�̂�)[sin 𝜃𝑓 − sin 𝜃𝑖] 

Problem continues on next page… 
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Usually the calculus steps can be skipped if you use the following memorized formula: 

𝐵𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =
𝜇0𝐼

4𝜋𝑎
[sin 𝜃𝑓 − sin 𝜃𝑖] 

1) Here 𝑎 is the distance from the point 𝐏 to the segment along the ⊥ bisector. 

2) Use the angles of the segment endpoints from the ⊥ bisector. 

3) Tip: if you screw up the initial and final angles, no big deal.  That simply switches the sign of the field.  

You can correct for this by checking field direction with the right hand rule. 

4) WATCH OUT: angles to the left of the ⊥ bisector are negative, while angles to the right of the ⊥ bisector 

are positive.  It is possible in some problems 

to have both angles positive or both angles 

negative. 

 

The perpendicular bisector determines what angle is 

𝜃 = 0°.  I chose to call angles to the right of the 

bisector positive. 

From the picture I can see 

sin 𝜃𝑓 = sin 𝜃2 = +
𝐿2

√𝑎2 + 𝐿2
2

 

sin 𝜃𝑖 = sin 𝜃1 = −
𝐿1

√𝑎2 + 𝐿1
2
 

Note: negative the angle makes sin 𝜃1 negative. 

 

�⃑� =
𝜇0𝐼

4𝜋𝑎
(−�̂�)[sin 𝜃𝑓 − sin 𝜃𝑖] 

�⃑� =
𝜇0𝐼

4𝜋𝑎
(−�̂�) [(

𝐿2

√𝑎2 + 𝐿2
2
) − (−

𝐿1

√𝑎2 + 𝐿1
2
)] 

�⃑� =
𝜇0𝐼

4𝜋𝑎
(−�̂�) [(

𝐿2

√𝑎2 + 𝐿2
2
) + (

𝐿1

√𝑎2 + 𝐿1
2
)] 

Notice both terms contribute to the field positively.  This makes sense, both wire segments produce magnetic field 

contributions in the same direction at P as determined by the right hand rule. 

 

Every year someone asks: 

“What happens if both angles are on the same side of the perpendicular bisector?” 

Consider the figure shown at right. 

The same exact process follows but now both angle as are positive 

 

A final note on the angles:  The angle is zero at the perpendicular bisector.  

You are free to choose the sign of angles to the right or left of this 0° angle as 

long as you are consistent with signs.  For example, in the previous example I 

could’ve chosen to call both angles negative.  What you should not do is call 

one positive and the other negative. Note: If you end up with a negative 

magnitude, just take the absolute value. 
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29.2 Spend some serious time digging into all the little nuggets in the 

figures at right. 

I will show an alternate style that you may prefer 

on the next page…. 
 

The field created by the differential segment located on the right side of the 

loop is  

𝑑�⃑� 1 =
𝜇0𝐼

4𝜋
∙
𝑑𝑠 1 × 𝑟 1

𝑟1
3  

The top view shows 𝑑𝑠 1 = 𝑅 𝑑𝜃 (−𝑗̂). 

 

Going from the source to the point of interest one finds 

𝑟 1 = −𝑅𝑖̂ + 𝑧�̂� 

Plugging into 𝑑�⃑� 1 

𝑑�⃑� 1 =
𝜇0𝐼

4𝜋
∙
𝑅 𝑑𝜃 (−𝑗̂) × (−𝑅𝑖̂ + 𝑧�̂�)

(𝑅2 + 𝑧2)3/2
 

By looking at the symmetry in the figure, we expect only the �̂� term should 

survive upon integration.  We figure out which term(s) in the cross-product 

will output a �̂� term.  The only term which produces a �̂� term comes from 

𝑗̂ × 𝑖̂.  Eliminating all the rest gives 

�⃑� =
𝜇0𝐼

4𝜋
∙ ∫

𝑅 𝑑𝜃 (−𝑗̂) × (−𝑅𝑖̂)

(𝑅2 + 𝑧2)3/2

2𝜋

0

 

Notice I switched from 𝑑�⃑� 1 to �⃑� =
𝜇0𝐼

4𝜋
∙ ∫ 𝑏𝑙𝑎ℎ 𝑏𝑙𝑎ℎ 𝑏𝑙𝑎ℎ

2𝜋

0
.  I have to do 

this because my symmetry argument only holds after doing the entire 

integration! 

�⃑� =
𝜇0𝐼

4𝜋
(−�̂�)∫

𝑅2 𝑑𝜃 

(𝑅2 + 𝑧2)3/2

2𝜋

0

 

�⃑� =
𝜇0𝐼

4𝜋
(−�̂�)

𝑅2 (2𝜋) 

(𝑅2 + 𝑧2)3/2
 

�⃑� =
𝜇0𝐼𝑅

2  

2(𝑅2 + 𝑧2)3/2
(−�̂�) 

For 𝑁 turns we find 

�⃑⃑� =
𝝁𝟎𝑵𝑰𝑹𝟐  

𝟐(𝑹𝟐 + 𝒛𝟐)𝟑/𝟐
(−�̂�) 

 

Note: the magnitude at the center (𝑧 = 0) of a single loop (𝑁 = 1) is 

𝑩𝒄𝒆𝒏𝒕𝒆𝒓 𝒐𝒇 𝒔𝒊𝒏𝒈𝒍𝒆 𝒄𝒊𝒓𝒄𝒖𝒍𝒂𝒓 𝒍𝒐𝒐𝒑 =
𝝁𝟎𝑰

𝟐𝑹
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P 
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The field created by an arbitrary differential segment is  

𝑑�⃑� =
𝜇0𝐼

4𝜋
∙
𝑑𝑠 × 𝑟 

𝑟3
 

Notice 𝑑𝑠 = 𝑅 𝑑𝜃 (−�̂�). 

Think: current flows opposite the standard math direction (counter-clockwise) 

for 𝜃.  Thus the −�̂�.  Note: �̂� = − sin 𝜃 𝑖̂ + cos 𝜃 𝑗.̂ 
 

Going from the source to the point of interest one finds 

𝑟 = 𝑅(−�̂�𝑚𝑎𝑡ℎ) + 𝑧�̂� 

Here −�̂�𝑚𝑎𝑡ℎ  means a unit vector directed towards the center of the circle. 

−�̂�𝑚𝑎𝑡ℎ = −(cos 𝜃 𝑖̂ + sin 𝜃 𝑗̂) 

 

 

Tip: rather than converting everything to Cartesian, make a wheel of pain for 

cylindrical polar coordinates! 

 

 

 

If                            then  

 

 

 

 

 

Plugging into  

𝑑�⃑� =
𝜇0𝐼

4𝜋
∙
(𝑅 𝑑𝜃 (−�̂�)) × (𝑅(−�̂�𝑚𝑎𝑡ℎ) + 𝑧�̂�)

𝑟3
 

 

By looking at the symmetry in the figure, we expect only the �̂� term should survive upon integration.   

We figure out which term(s) in the cross-product will output a �̂� term.   

The only term which produces a �̂� term comes from (−�̂�) × (−�̂�𝑚𝑎𝑡ℎ) = −�̂�.   

Eliminating all the rest gives 

�⃑� =
𝜇0𝐼

4𝜋
(−�̂�)∫

𝑅2 𝑑𝜃 

(𝑅2 + 𝑧2)3/2

2𝜋

0

 

�⃑⃑� =
𝝁𝟎𝑵𝑰𝑹𝟐  

𝟐(𝑹𝟐 + 𝒛𝟐)𝟑/𝟐
(−�̂�) 
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29.3 We know the total field is the vector sum of the fields produced by 

each segment. 

�⃑� 𝑡𝑜𝑡𝑎𝑙 = �⃑� 1 + �⃑� 2 + �⃑� 3 

In this case, each segment produces a contribution to the total field IN THE 

SAME DIRECTION (verify with right hand rule). 

When this occurs, we may simplify the above expression and add the field 

magnitudes instead. 

𝐵𝑡𝑜𝑡 = 𝐵1 + 𝐵2 + 𝐵3 

Notice, from symmetry in the problem, 𝐵1 = 𝐵3.   

These wires are each exactly half of an infinite wire. 

 

To be clear, a half-infinite wire extends from infinity to the PERPENDICULAR BISECTOR. 

More on this below the final answer… 

 

Together they produce a field magnitude equal to that of a single infinitely long wire (𝐵1 + 𝐵3 =
𝜇0𝐼

2𝜋𝑅
= 0.1592

𝜇0𝐼

𝑅
)! 

𝐵2 =
1

6
 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 𝑚𝑎𝑔𝑛𝑡𝑖𝑢𝑑𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝑎 𝑓𝑢𝑙𝑙 𝑐𝑖𝑟𝑐𝑙𝑒 𝑎𝑡 𝑐𝑒𝑛𝑡𝑒𝑟 

𝐵2 =
1

6
∙
𝜇0𝐼

2𝑅
=

1

12
∙
𝜇0𝐼

𝑅
= 0.08333

𝜇0𝐼

𝑅
 

𝐵𝑡𝑜𝑡 = 0.1592
𝜇0𝐼

𝑅
+ 0.08333

𝜇0𝐼

𝑅
 

𝑩𝒕𝒐𝒕 = 𝟎. 𝟐𝟒𝟐
𝝁𝟎𝑰

𝑹
 

 

b) The magnetic field created by the wire is directed out of the page at P. 

 

Regarding a half-infinite wire… 

To see where this comes from, consider our shortcut formula 

𝐵 =
𝜇0𝐼

4𝜋𝑎
[sin 𝜃𝑓 − sin 𝜃𝑖] 

The angles you punch in for 𝜃𝑓  &  𝜃𝑖 correspond to the enpoints of the wire segment you are working on. 

Be sure to determine the angles relative to the perpendicular bisector! 

The perpendicular bisector corresponds to 𝜃 = 0. 

If both angles are on the same side of the bisector, make both angles positive. 

If angles are on opposite sides of the bisector, make one of them negative. 

Since I am looking for a field magnitude in the above equation, I expect a positive result. 

I could always take the absolute value of the output to ensure a positive result. 

Alternatively, simply make sure your largest angle is positive and use it for 𝜃𝑓. 

For a half-infinite wire, one angle is 𝜃𝑓 = 90° corresponding to the end of the wire segment near infinity. 

The other angle is 𝜃𝑖 = 0° corresponding to the end of the wire segment at the perpendicular bisector. 

  

𝑅 

𝐼 

P 

𝟏 
𝟐 

𝟑 



29.4 The magnitude produced by each long wire is given by the memorized result 

for long straight wires distance 𝑟 away: 

𝐵 =
𝜇𝑜𝑖

2𝜋𝑟
 

To get the directions, first draw a vector from source to point of interest for each 

wire.  The direction of magnetic field produced at the point of interest is always ⊥ 

to this source to POI vector.   

• GRAB THAT WIRE (align your right hand thumb in the direction of 

current). 

• Curl your fingers around the wire until your hand is aligned with the 

source to POI 𝑟  

• The direction your fingertips are curling indicates the direction of the 

magnetic field at the POI! 

�⃑� 𝑡𝑜𝑡𝑎𝑙 = �⃑� 1 + �⃑� 2 + �⃑� 3 

�⃑� 𝑡𝑜𝑡𝑎𝑙 =
𝜇𝑜𝐼1
2𝜋𝑟1

(cos 45° (−𝑖)̂ + sin 45° (−𝑗̂)) +
𝜇𝑜𝐼2
2𝜋𝑟2

(+𝑖̂) +
𝜇𝑜𝐼3
2𝜋𝑟3

(+𝑗̂) 

�⃑� 𝑡𝑜𝑡𝑎𝑙 = −
𝜇𝑜𝐼1
2𝜋𝑟1

(
√2

2
𝑖̂ +

√2

2
𝑗̂) +

𝜇𝑜𝐼2
2𝜋𝑟2

(+𝑖̂) +
𝜇𝑜𝐼3
2𝜋𝑟3

(+𝑗̂) 

�⃑� 𝑡𝑜𝑡𝑎𝑙 = −
√2

2
∙
𝜇𝑜𝐼1
2𝜋𝑟1

(𝑖̂ + 𝑗̂) +
𝜇𝑜𝐼2
2𝜋𝑟2

(+𝑖̂) +
𝜇𝑜𝐼3
2𝜋𝑟3

(+𝑗̂) 

In the problem statement we are told 𝐼2 = 𝐼3 = 𝐼  &  𝐼1 = 2𝐼. 

From the figure we can see 𝑟1 = √2𝑎  &  𝑟2 = 𝑟3 = 𝑎. 

�⃑� 𝑡𝑜𝑡𝑎𝑙 = −
√2

2
∙

𝜇𝑜(2𝐼)

2𝜋(√2𝑎)
(𝑖̂ + 𝑗̂) +

𝜇𝑜(𝐼)

2𝜋(𝑎)
(+𝑖)̂ +

𝜇𝑜(𝐼)

2𝜋(𝑎)
(+𝑗̂) 

�⃑� 𝑡𝑜𝑡𝑎𝑙 = 𝑍𝐸𝑅𝑂 

 

Nothing like a long, painful calculation that ends up being ZERO!  Physicist attempt at humor? 

 

𝑎 

𝑎 𝐼1  𝐼2 

𝐼3 𝑟 3 
�⃑� 3 

𝑟 2 

�⃑� 2 

𝑟 1 

�⃑� 1 



29.5 

a) For the big half circle (the left figure) current must run to the right in the upper 

straight wire segment to cause a magnetic field into the page 𝐏𝟏. 

For the small half circle (the right figure) current must run upwards in the upper 

straight wire segment to cause a magnetic field into the page at  𝐏𝟐. 

b) The left wire can be thought of as two “half-infinite” straight wire plus half a 

circle of radius 𝑅. 

�⃑� 1 = 2(ℎ𝑎𝑙𝑓 𝑎𝑛 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑤𝑖𝑟𝑒)(−�̂�) +
1

2
(𝑐𝑖𝑟𝑐𝑙𝑢𝑙𝑎𝑟 𝑤𝑖𝑟𝑒 𝑎𝑡 𝑐𝑒𝑛𝑡𝑒𝑟)(−�̂�) 

In this case, all fields contribute in the same direction to the net field.  When this 

happens we can drop the vectors and add the magnitudes (not always the case). 

𝐵1 = 2(ℎ𝑎𝑙𝑓 𝑎𝑛 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑤𝑖𝑟𝑒) +
1

2
(𝑐𝑖𝑟𝑐𝑙𝑢𝑙𝑎𝑟 𝑤𝑖𝑟𝑒 𝑎𝑡 𝑐𝑒𝑛𝑡𝑒𝑟) 

𝐵1 = (𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑤𝑖𝑟𝑒) +
1

2
(𝑐𝑖𝑟𝑐𝑙𝑢𝑙𝑎𝑟 𝑤𝑖𝑟𝑒 𝑎𝑡 𝑐𝑒𝑛𝑡𝑒𝑟) 

𝐵1 =
𝜇0𝐼1
2𝜋𝑅

+
1

2
(
𝜇0𝐼1
2𝑅

) 

𝐵1 =
𝜇0𝐼1
𝑅

(
1

2𝜋
+

1

4
) 

𝐵1 =
𝜇0𝐼1
𝑅

(0.1592 + 0.25) 

𝐵1 = 0.4092
𝜇0𝐼1
𝑅

 

Notice the straight wire contributes slightly less than the half circle. 

The right wire has a half circle segment (of radius 
𝑅

2
) and two straight line segments.   

Because the straight line segments run radially towards or away from  𝐏𝟐 they do not 

contribute to the magnetic field at 𝐏𝟐.   

Obviously they contribute to the magnetic field produced at many other locations, 

they simply don’t contribute to the field at 𝐏𝟐.   

𝐵2 =
1

2
(𝑐𝑖𝑟𝑐𝑙𝑢𝑙𝑎𝑟 𝑤𝑖𝑟𝑒 𝑎𝑡 𝑐𝑒𝑛𝑡𝑒𝑟) =

1

2
(

𝜇0𝐼2

2 (
𝑅
2
)
) = 0.5

𝜇0𝐼2
𝑅

 

Notice the field at 𝐏𝟐 is stronger than the field at 𝐏𝟏 IF the same current is used.   

The half circle segment of wire 2 is twice as close to the point of interest; that contribution is twice as large!!! 

 

Question asked for ratio of currents to make mag field at the two points identical in size. 

This means 

0.4092
𝜇0𝐼1
𝑅

= 0.5
𝜇0𝐼2
𝑅

 

𝐼1
𝐼2

=
0.5

0.4092
= 1.222 

Current in case 1 must be about 22% larger to cause the same size field at the center of its half circle. 

 

  

𝑅 

𝑅

2
 

𝐏𝟏 

𝑷𝟐 

𝑅 



29.6 Note: for 𝑁 turns, the current simply gets multiplied by 𝑁! 

a) Current runs counter-clockwise in the loop. 

b) I tried to split up the segments so they would be slightly easier to identify.  

Note: there are many other correct ways to split up the loop as we will see 

throughout the course of doing this problem. 

 

Segments 2 & 6 will not contribute to the field at 𝐏 because in those segments 

current runs either radially away or towards 𝐏. 

 

All other segments produce contributions to the magnetic field in the same 

direction.  Once again we can ignore the vectors and simply add field 

magnitude from each segment.  This will not always be the case. 

 

By symmetry, we see the magnetic field contribution from 𝟑 & 𝟓 should be the 

same.  Furthermore, look carefully and realize segment 𝟒 should be exactly 

twice as large as either segment 𝟑 or 𝟓. 

 

Note: for straight wire segments I have my handy memorized formula: 

𝐵𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =
𝜇0𝑁𝐼

4𝜋𝑎
[sin 𝜃𝑓 − sin 𝜃𝑖] 

Here 𝑎 is the distance from the point 𝐏 to the segment along the ⊥ bisector. 

Use the angles of the segment endpoints from the ⊥ bisector. 

Tip: if you screw up the initial and final angles, no big deal.  That simply 

switches the sign of the field.  You can correct for this by checking field 

direction with the right hand rule. 

WATCH OUT: angles to the left of the ⊥ bisector are negative, while angles to 

the right of the ⊥ bisector are positive.  It is possible in some problems to have 

both angles positive or both angles negative. 

 

I will compute the field contribution from segment 3.   

𝐵3 =
𝜇0𝑁𝐼

4𝜋(𝟐𝑹)
[sin(𝟒𝟓°) − sin(𝟎°)] 

𝐵3 =
𝜇0𝑁𝐼

8𝜋𝑅
[
√2

2
− 0] 

𝐵3 =
√2𝜇0𝑁𝐼

16𝜋𝑅
= 0.02814

𝜇0𝑁𝐼

𝑅
 

 

Finally, the field contribution from segment 𝟏 is easy to compute: 𝐵1 =
1

2
(
𝜇0𝑁𝐼

2𝑅
) = 0.25

𝜇0𝑁𝐼

𝑅
.   

 

The total field is thus 

�⃑� 𝑡𝑜𝑡 = �⃑� 1 + �⃑� 2 + �⃑� 3 + �⃑� 4 + �⃑� 5 + �⃑� 6 

Since all contributions point in the same direction we can add magnitudes instead (not always the case). 

Segments 2 & 6 do not contribute.  By symmetry �⃑� 3 = �⃑� 5 and �⃑� 4 = 2�⃑� 3. 

𝐵𝑡𝑜𝑡 = 𝐵1 + 4𝐵3 = 0.3626
𝜇0𝑁𝐼

𝑅
 

𝑰 =
𝟐. 𝟕𝟔𝑹𝑩

𝑵𝝁𝟎

 

c) The largest field contribution comes from segment 1, followed by 4, then 3 & 5 are tied.  Finally 2 & 6 are tied.  

𝑅 

𝑅 

2𝑅 

𝑅 

𝟏 

𝟐 

𝟑 

𝟒 

𝟓 

𝟔 

𝐏 
45° 

45° 

45° 

2𝑅 𝟑 

𝑷 

𝜽
𝒊
=

𝟎
° 
fr
o
m

⊥
b
is
ec

to
r 



29.7  

a) Fortunately, this problem uses square symmetry so angles 

will be 45° or 90°.  See the picture at right. 

�⃑� 𝑛𝑒𝑡 = �⃑� 1 + �⃑� 2 

 

�⃑� 𝑛𝑒𝑡 =
𝜇0𝐼

2𝜋(√2𝑠)
(cos 45° (𝑖)̂ + sin 45° (𝑗̂)) +

𝜇0𝐼

2𝜋(𝑠)
(−𝑗̂) 

 

�⃑� 𝑛𝑒𝑡 =
𝜇0𝐼

2𝜋(√2𝑠)
(
√2

2
(𝑖̂ + 𝑗̂)) −

𝜇0𝐼

2𝜋𝑠
𝑗̂ 

�⃑� 𝑛𝑒𝑡 =
𝜇0𝐼

4𝜋𝑠
(𝑖̂ + 𝑗̂) −

𝜇0𝐼

2𝜋𝑠
𝑗̂ 

�⃑� 𝑛𝑒𝑡 =
𝜇0𝐼

4𝜋𝑠
(𝑖̂ − 𝑗̂) 

𝐵𝑛𝑒𝑡 = √(
𝜇0𝐼

4𝜋𝑠
)
2

+ (−
𝜇0𝐼

4𝜋𝑠
)
2

 

𝐵𝑛𝑒𝑡 =
𝜇0𝐼

4𝜋𝑠
√2 

From problem statement we are given 𝐵𝑛𝑒𝑡 = 𝐵 and side 

length 𝑠.  Asks us to solve for 𝐼. 

𝑰 =
𝟒𝝅𝒔𝑩

√𝟐𝝁𝟎

 

b)  In the figure one sees the direction is 45° below the positive 𝑥-axis. 

 

  

𝑠 
𝑖 ̂

𝑗̂ 

𝑠 

�⃑� 𝑛𝑒𝑡 

�⃑� 2 

�⃑� 1 

𝑟2 = 𝑠 

𝑟1 = √2𝑠 



29.8 

a) 𝑎√2 =
𝑟

2
 gives 𝑟 = 2√2𝑎 

b) into the page 

c) segments 2 and 4 (notice they point radially away/towards the point of interest) 

d) segments 1 and 5 ARE NOT SEMI-INFINITE WIRES!!!  One way is to view segments 1 and 5 as an infinite 

wire MINUS the little bit in the middle or determine segment 1 (or 5) and double it.  I choose to do segment 5 and 

double it. 

�⃑� 5 =
𝜇0𝐼

4𝜋
∫

(𝑑𝑥𝑖̂) × (−𝑥𝑖̂ − 𝑎𝑗̂)

(𝑥2 + 𝑎2)3/2

𝑓

𝑖

 

�⃑� 5 =
𝜇0𝐼𝑎

4𝜋
(−�̂�)∫

𝑑𝑥

(𝑥2 + 𝑎2)3/2

𝑓

𝑖

 

�⃑� 5 =
𝜇0𝐼𝑎

4𝜋
(−�̂�) [

sin 𝜃

𝑎2
]
𝑖

𝑓

 

�⃑� 5 =
𝜇0𝐼

4𝜋𝑎
(−�̂�)[sin 𝜃𝑓 − sin 𝜃𝑖] 

 

In this case remember that all angles must be referenced to the perpendicular bisector! 

 
Therefore we find 

�⃑� 5 =
𝜇0𝐼

4𝜋𝑎
(−�̂�)[sin 90° − sin 45°] =

𝜇0𝐼

4𝜋𝑎
(1 −

√2

2
) (−�̂�) 

Don’t forget �⃑� 1 = �⃑� 5. 

Lastly 𝐵3 =
1

4
𝐵𝑐𝑖𝑟𝑐𝑙𝑒 =

1

4

𝜇0𝐼

2𝑟
.  Watch out…the radius of the circle is 𝑟…not 𝑎!!!  From part a recall 𝑟 = 2√2𝑎.  

Also, by some right hand rule one sees �⃑� 3 points in the same direction as �⃑� 1 &  �⃑� 5. 

This allows us to add the magnitudes of the field. 

Putting it all together and plugging in all numbers to a calculator 

𝐵𝑡𝑜𝑡𝑎𝑙 = 𝐵3 + 2𝐵5 = 𝟎. 𝟎𝟗𝟎𝟖
𝝁𝟎𝑰

𝒂
 

 

  

𝑡𝑜 ∞ 

𝜃𝑓 ≈ 90° 



29.9 

a) In each case the circular arc closest to the point (smallest radius) will be the dominant contributor to the magnetic 

field.  Using the right hand rule tells us the directions of the mag fields at each black dot are  

CASE 1 CASE 2 CASE 3 

Into the page (−�̂�) Out of the page (+�̂�) Into the page (−�̂�) 

b) In each case the straight line segments carry current either radially towards or away from the black dot.  The 

straight line segments thus do not contribute to the mag field at the black dot.  Furthermore, in each case we can add 

(or subtract) the circular segments to determine the total mag field.  The magnetic field of a full circle is 
𝜇0𝐼

2𝑟
.  See 

work below.  I’m assuming 𝑖̂ to the right, 𝑗̂ up, and �̂� out of the page. 

CASE 1 CASE 2 CASE 3 

�⃑� 𝑛𝑒𝑡 =
3

4
(

𝜇0𝐼

2(2𝑟)
�̂� −

𝜇0𝐼

2(𝑟)
�̂�) 

�⃑� 𝑛𝑒𝑡 =
𝜇0𝐼

𝑟
(
3

4
) (

1

4
−

1

2
) �̂� 

�⃑� 𝑛𝑒𝑡 =
𝜇0𝐼

𝑟
(
3

4
) (−

1

4
) �̂� 

�⃑� 𝑛𝑒𝑡 =
𝜇0𝐼

𝑟
(

𝟑

𝟏𝟔
) (−�̂�) 

�⃑� 𝑛𝑒𝑡 =
1

2
(

𝜇0𝐼

2(3𝑟)
�̂� +

𝜇0𝐼

2(𝑟)
�̂�) 

�⃑� 𝑛𝑒𝑡 =
𝜇0𝐼

𝑟
(
1

2
) (

1

6
+

1

2
) �̂� 

�⃑� 𝑛𝑒𝑡 =
𝜇0𝐼

𝑟
(
1

2
) (

4

6
) �̂� 

�⃑� 𝑛𝑒𝑡 =
𝜇0𝐼

𝑟
(
𝟏

𝟑
) (�̂�) 

�⃑� 𝑛𝑒𝑡 =
1

2
(−

𝜇0𝐼

2(𝑟)
�̂� +

𝜇0𝐼

2(3𝑟)
�̂�) 

�⃑� 𝑛𝑒𝑡 =
𝜇0𝐼

𝑟
(
1

2
) (−

1

2
+

1

6
) �̂� 

�⃑� 𝑛𝑒𝑡 =
𝜇0𝐼

𝑟
(
1

2
) (−

2

6
) �̂� 

�⃑� 𝑛𝑒𝑡 =
𝜇0𝐼

𝑟
(
𝟏

𝟔
) (−�̂�) 

 

b) Notice the magnitudes of the fields are now easily ranked by the colored fractions. 

Converting to decimals makes it even easier to rank the field magnitudes. 

𝐵3 < 𝐵1 < 𝐵2 

 

  



29.10 Part a) I actually ended up drawing the field created by wire 1 in blue and the field created by wire 2 in green. 

To reduce clutter, I made the green lines mostly transparent. 

 

 

 

 

 

 

 

 

 

 

Part b) The force exerted by mag field 1 on wire 2 is directed TO THE LEFT. 

Part c) As long as 𝑥 ≪ 𝐿, we may assume our wires are infinitely long. 

Assuming this is true, current 1 creates a field at wire 2’s position (distance 𝑥 from wire 1) 

𝐵1 =
𝜇0𝑖1
2𝜋𝑥

 

The force exerted by wire 1 on wire 2 is thus 

𝐹1𝑜𝑛2 = 𝑖2𝐿2𝐵1 

𝐹1𝑜𝑛2 = 𝑖2𝐿2 (
𝜇0𝑖1
2𝜋𝑥

) 

𝑭𝟏𝒐𝒏𝟐 =
𝝁𝟎𝒊𝟏𝒊𝟐𝑳

𝟐𝝅𝒙
 

It’s common to express this result as force per unit length (exerted by wire 1 on wire 2): 
𝐹1𝑜𝑛2

𝐿
=

𝜇0𝑖1𝑖2
2𝜋𝑥

 

Note: if 𝑥 is large, usually the fields are too weak to cause any significant force anyways. 

Again, this problem usually only matters in real-world applications when 𝑥 ≪ 𝐿. 

 

Part d) Doubling either current doubles the size of the force.   

Reversing either current direction reverses the direction of the force. 

 

Part e) Like currents attract; like charges repel.  Video of wires connected to car battery (no additional resistance). 

An interesting way to look at it: consider the two magnetic field patterns produce above. 

If the wires are attracted to each other (and could somehow overlap), notice the field patterns would be identical. 

This is analogous to bar magnets trying to line up their magnetic fields by snapping north pole to south pole! 

 

Part f) 3.65 mN (to the right on wire 1, to the left on wire 2).   

Note: technically the question asked for force (not force magnitude).   

As such you should specify both magnitude and direction. 

 

Curious about high power transmission lines?  I started googling around and found some extremely boring 

technical leaflets and websites.  One stated the smallest spacing they ever used was about 𝑥 ≈ 8 ft ≈ 2.4 m. 

Another site stated the metal supports are perhaps 𝐿 = 700 ft ≈ 210 m apart. 

Another website stated typical transmission currents average less than 1000 A. 

I punched in some numbers and found a tiny force of about 20 N on that massive cable. 

THINK: the weight of a 700 ft long cable (or wind forces from a slight breeze) easily dwarf this magnetic force. 

𝒊𝟐 𝒊𝟏 

𝑥 

𝐿 

https://www.youtube.com/watch?v=0OxHKi_MLV8&list=PLBQTyyPKj9Wafg6mjd_LQimg8ugkar9i8&index=20


29.11 By symmetry one expects the net force to be zero.  Consider the force on the 

horizontal wire due to the current in the vertical wire.  The field will point into the 

page on one side and out of the page on the other side.  Even though the B-field 

gets weaker, it will weaken symmetrically on each side.  On the right half of the 

wire a next force will point upwards while on the left half a net force will point 

downwards.  Notice that while there is no net force, there is a net torque that would 

tend to align the two wires!  This makes me the case of long parallel wires running 

current in the same direction that were attracted to each other… 

 

To get the force on the left half of the horizontal wire: 

𝐹 𝑙𝑒𝑓𝑡 ℎ𝑎𝑙𝑓 = ∫ 𝐼𝑑𝑠 × �⃑� 𝑒𝑥𝑡

𝐿/2

0

 

Here �⃑� 𝑒𝑥𝑡  is caused by the vertically oriented wire while we are integrating over the 

length of the horizontal wire.  In the end we can consider infinitely long wires by 

letting L→∞. One might INCORRECTLY think the following is reasonable: 

 

𝐹 𝑙𝑒𝑓𝑡 ℎ𝑎𝑙𝑓 = 𝐼 ∫ 𝑑𝑥𝑖̂ ×
𝜇0𝐼

2𝜋𝑥

𝐿/2

0

(−�̂�) =
𝜇0𝐼

2

2𝜋
𝑗̂ ∫

𝑑𝑥

𝑥
=

𝐿/2

0

𝜇0𝐼
2

2𝜋
𝑗̂ ln

𝐿/2

0
= 𝑈𝑁𝐷𝐸𝐹𝐼𝑁𝐸𝐷! 

 

Of course, here is where the mathematical model fails a reality check.  It would seem that the point where the two 

wires touch would contribute an infinite amount of force.  In reality, the two wires would probably be covered with 

some insulator of some sort.  The wires could not be infinitely thin.  As such, at the point where the two wires touch 

the horizontal wire is actually displaced in the positive z-direction ever so slightly.  In doing this, at the point where 

the two wires touch the magnetic field is actually parallel to the horizontal wire and contributes absolutely no force!  

Very counterintuitive!   

 

To solve this, I would view the system from the top and create a polar coordinate system (see figure below…note I 

used this coordinate system so we could still use the standard definition of �̂�).  You need to include an angle as well 

as the diameter of the wires in your calculation.  Also, it would still be only an approximation… 

  

�⃑� =
𝜇0𝐼

2𝜋𝑟
�̂� 

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑑 

𝑟 = 𝑥𝑖̂ − 𝑑𝑗̂ 

x 

y 

z 

𝐹 𝑙𝑒𝑓𝑡 ℎ𝑎𝑙𝑓 =
𝜇0𝐼

2

2𝜋
∫

𝑑𝑥(𝑖̂ × �̂�)

(𝑥2 + 𝑑2)1/2

𝐿/2

0

 

which still needs work before integrating since �̂� = − sin 𝜃𝑖̂ + cos 𝜃𝑗̂ = −
𝑑

(𝑥2+𝑑2)1/2 𝑖̂ +
𝑥

(𝑥2+𝑑2)1/2 𝑗̂ 

Don’t forget…this is only approximate!  How brutally delicious! 

𝜃 

x 

y 

z 



29.12   

a) Mag field created by wire points into the page at location of ball.  For a ball falling down, we expect 

downward velocity.  RHR gives force on ball to the right.  HOWEVER, at the instant after the ball is released 

velocity is essentially zero so one wouldn’t expect much deflection at all. 

b) Instead of being released from rest, the charge was thrown with initial speed v0.  If the charge is thrown into (or 

out of) the page (±�̂�) there is no initial magnetic force. 

c) 

 
d) What would the path of travel would look like?  The magnetic field will not be constant unless the particle is 

moving vertically.  Unfortunately, even when the particle moves vertically for an instant, it will be deflected from 

vertical and not experience a constant field.  As such, this particle will definitely not have a constant force (even if 

gravity is negligible).  To solve this one would need to derive the position as a function of time.  To do this, one 

would need some serious diff eqt’n skills.  This is because you find: 

𝑎 =
𝑑2(𝑥 )

𝑑𝑡2
= −

𝑞𝑣0𝐵

𝑚
sin𝜃 𝑖̂ + (

𝑞𝑣0𝐵

𝑚
cos 𝜃 − 𝑔) 𝑗̂ 

where both B and  depend on x.  I don’t how this would work out off the top of my head.  I think there might even 

be various wildly different answers based on the field strength and the initial speed…I have no clue!  Create me a 

time machine and I’ll work on this when I am really old and come back to give you the answers.  Then again, clearly 

you didn’t get the time machine done…thanks for nothing. 

Best method: code it. 

  

x 

y 

z 
v0 

    

    

    

v0x 

v0y 

x 

y 

z 

mg 

 

FBD 
𝑣 = 𝑣0 cos 𝜃 �̂� + 𝑣0 sin𝜃 �̂� 

�⃑� =
𝜇0𝐼

2𝜋𝑥
(−�̂�) 

Could do 𝐹𝐵
⃑⃑⃑⃑ = 𝑞𝑣 × �⃑�  

Or recognize 𝐹𝐵 = 𝑞𝑣0𝐵 sin90 in a direction that 

is 90° from v0.  Either way you should end up 

with: 

𝑎 = −
𝑞𝑣0𝐵

𝑚
sin 𝜃 �̂� + (

𝑞𝑣0𝐵

𝑚
cos𝜃 − 𝑔) �̂� 

𝑎 = √(
𝑞𝑣0𝐵

𝑚
)
2

+ 𝑔2 −
2𝑔𝑞𝑣0𝐵

𝑚
cos𝜃 

where 𝐵 =
𝜇0𝐼

2𝜋𝑥
.  Nasty. 



29.13 

a) The segments farthest from point P should 

contribute the least, segments 1 & 2 in this 

case. 

 

b) Segments 3 & 4 both produce contributions 

INTO the page at P.  Since these are the 

dominant contributions, the net field points 

into the page at P. 

 

c) My guess: I think the contribution from 

segment 4 should be slightly larger than the 

contribution from segment 3…but I bet it is 

very close. 

 

d) I sketched the angles for segment 3 in blue.  

Notice I had to extend the wire to find the 

perpendicular bisector. 

 𝜃𝑓 = tan−1 (
3𝑑+𝑑 sin 60°

𝑑 cos 60°
) ≈ 82.63° 

𝐵3 ≈
𝜇0𝐼

4𝜋(𝑑 cos 60°)
[sin 82.63° − sin 60°] 

𝐵3 ≈ 0.02001
𝜇0𝐼

𝑑
 

 

I sketched the angles for segment 4 in red.  

Notice I had to extend the wire to find the 

perpendicular bisector.  Notice the 

perpendicular distance is not the same! 

𝜃𝑓 = tan−1 (
2𝑑 + 𝑑 sin 30°

𝑑 cos 30°
) ≈ 70.89° 

𝐵4 ≈
𝜇0𝐼

4𝜋(𝑑 cos 30°)
[sin 70.89° − sin 30°] 

𝐵4 ≈ 0.04088
𝜇0𝐼

𝑑
 

 

Evidently it wasn’t that close… 

 

Solution continues on the next page… 

 

 

  

3𝑑 

2𝑑 

1 

2 

3 

4 

30° 

𝑑 cos60° 

4 

𝑑 cos 30° 

3𝑑 + 𝑑 sin60° = (3 +
√3

2
)𝑑 ≈ 3.866𝑑 

2𝑑 + 𝑑 sin 30° = 2.5𝑑 

𝑑 sin60° 

𝑑 sin 30° 



e) I expected the other segments to be negligible…to be sure I compute their contributions. 

The net field from segments 3 & 4 is 

�⃑� 34 ≈ −0.06089
𝜇0𝐼

𝑑
�̂� 

where I’m assuming a standard coordinate system with out of the page equivalent to �̂�. 

Why am I suddenly writing the field vector (instead of field magnitude)? 

Because the contributions from segments 1 & 2 point the opposite direction! 

When P is inside a loop, each segment produces a field contribution in the same direction. 

When P is outside a loop, opposite segments produce field contributions in the opposite directions. 

 

For segment 1 you can show 

𝜃𝑓 = tan−1 (
3𝑑 + 𝑑 sin 60°

2𝑑 + 𝑑 sin 30°
) ≈ 57.11° 

𝐵1 ≈
𝜇0𝐼

4𝜋(2𝑑 + 𝑑 sin 30°)
[sin 57.11° − sin(19.11°)] 

�⃑� 1 ≈ 0.01631
𝜇0𝐼

𝑑
�̂� 

 

For segment 2 you can show 

𝜃𝑓 = tan−1 (
2𝑑 + 𝑑 sin 30°

3𝑑 + 𝑑 sin 60°
) ≈ 32.89° 

𝐵2 ≈
𝜇0𝐼

4𝜋(3𝑑 + 𝑑 sin 60°)
[sin 32.89° − sin(7.37°)] 

�⃑� 2 ≈ 0.00854
𝜇0𝐼

𝑑
�̂� 

The combined field from segments 1 & 2 is 

�⃑� 12 ≈ +0.02485
𝜇0𝐼

𝑑
�̂� 

The percent change to the field MAGNITUDE 𝐵34 is  

%Δ𝐵 =
Δ𝐵34

𝐵34

× 100% 

%Δ𝐵 =
−𝐵12

𝐵34

× 100% 

%Δ𝐵 =
−0.00854

𝜇0𝐼
𝑑

0.06089
𝜇0𝐼
𝑑

× 100% 

%𝚫𝑩 ≈ −𝟒𝟏% 

Clearly the other segments should NOT be considered negligible. 

  

1 

2 

3 

4 

3𝑑 + 𝑑 sin60° = (3 +
√3

2
)𝑑 ≈ 3.866𝑑 

2
𝑑

+
𝑑

sin
3
0
°
=

2
.5

𝑑 



29.14 

a) See the derivation in problem 29.1.  The field at P is 

𝐵 =
𝜇0𝐼

4𝜋𝑑

[
 
 
 

(

 

𝐿
2

√𝑑2 +
𝐿2

4 )

 +

(

 

𝐿
2

√𝑑2 +
𝐿2

4 )

 

]
 
 
 

 

𝑩 =
𝝁𝟎𝑰𝑳

𝟒𝝅𝒅√𝒅𝟐 +
𝑳𝟐

𝟒

 

b) We are asked to find a value for 𝐿 such that  

𝐵 = 0.99𝐵∞ 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡  

𝜇0𝐼𝐿

4𝜋𝑑√𝑑2 +
𝐿2

4

= 0.99
𝜇0𝐼

2𝜋𝑑
 

𝐿

2√𝑑2 +
𝐿2

4

= 0.99 

𝐿

2
= 0.99√𝑑2 +

𝐿2

4
 

Now square both sides. 

𝐿2

4
= 0.9801 (𝑑2 +

𝐿2

4
) 

1

4(0.9801)
𝐿2 = 𝑑2 +

𝐿2

4
 

1

0.9801
𝐿2 = 4𝑑2 + 𝐿2 

 

(
1

0.9801
− 1) 𝐿2 = 4𝑑2 

𝐿2 =
4

    
1

0.9801
− 1    

𝑑2 

𝐿 = √
4

    
1

0.9801
− 1    

𝑑 

𝑳 ≈ 𝟏𝟒. 𝟎𝟒𝒅 

 

Another interpretation of this: 

Suppose you are distance 𝑑 from a long straight wire. 

Points on the wire more than 7𝑑 from the perpendicular bisector produce negligible contributions to the 

field (compared to contributions from points on the wire near the perpendicular bisector). 

  



29.15 �⃑⃑�  on axis through centroid of equilateral triangle 

 

First consider the top view shown in the upper figure at right.  I will call 

the distance from the center of an edge to the centroid ℎ.  From a corner 

to the centroid will be 𝑑.  Note: because this is an equilateral triangle, 

we know the angle 30° shown in the figure.  Using SOH CAH TOA we 

find  

tan 30° =
ℎ

𝑠/2
 

 

ℎ =
𝑠 tan 30°

2
=

𝑠

2√3
 

 

 

Now consider the triangular loop of wire carrying current I shown in the 

side view (lower figure at right).  We are going to use the Biot-Savart 

law to compute the magnetic field at some point on the 𝑧-axis.  The loop 

lies in the 𝑥𝑦-plane.  The 𝑧-axis runs through the centroid of the 

triangle.  The point of interest is distance 𝑧 above the 𝑥𝑦-plane. 

 

We will start by using the tiny segment of wire indicated by the little 

black rectangle distance 𝑦 from the 𝑥-axis.  The vector from the 

segment to the point of interest is thus 

𝑟 = −ℎ𝑖̂ − 𝑦𝑗̂ + 𝑧�̂� 

The distance is thus 

𝑟 = √ℎ2 + 𝑦2 + 𝑧2 

If current runs +𝑗 ̂in this segment we expect 𝑑𝑠 = 𝑑𝑦𝑗̂.   

Using the Biot-Savart law on this segment gives 

�⃑� 𝑠𝑒𝑔 1 =
𝜇0𝐼

4𝜋
∫

𝑑𝑠 × �̂�

𝑟2

𝑓

𝑖

 

�⃑� 𝑠𝑒𝑔 1 =
𝜇0𝐼

4𝜋
∫

𝑑𝑠 × 𝑟 

𝑟3

𝑓

𝑖

 

�⃑� 𝑠𝑒𝑔 1 =
𝜇0𝐼

4𝜋
∫

(𝑑𝑦𝑗̂) × (−ℎ𝑖̂ − 𝑦𝑗̂ + 𝑧�̂�)

(ℎ2 + 𝑦2 + 𝑧2)3/2

+𝑠/2

−𝑠/2

 

Notice the 𝑗̂ × 𝑗̂ terms will drop.  If we consider the symmetry of all three segments of the wire, we expect the final 

result should be entirely in the �̂�.  Using this symmetry we can ignore the  𝑗̂ × �̂� term as well!!!  Therefore  

�⃑� 𝑠𝑒𝑔 1𝑧 =
𝜇0𝐼

4𝜋
∫

(𝑑𝑦𝑗̂) × (−ℎ𝑖̂)

(ℎ2 + 𝑦2 + 𝑧2)3/2

+𝑠/2

−𝑠/2

 

�⃑� 𝑠𝑒𝑔 1𝑧 =
𝜇0𝐼

4𝜋
(𝑗̂) × (−𝑖)̂ ∫

ℎ 𝑑𝑦

(ℎ2 + 𝑦2 + 𝑧2)3/2

+𝑠/2

−𝑠/2

 

�⃑� 𝑠𝑒𝑔 1𝑧 =
𝜇0𝐼

4𝜋
�̂� ∫

ℎ 𝑑𝑦

(ℎ2 + 𝑦2 + 𝑧2)3/2

+𝑠/2

−𝑠/2

 

It is worth checking the expected direction with a right hand rule.  I confirmed it should be +�̂�.  Lastly, we know 

there are three segments which produce equal contribution in the +�̂� direction.  The total field produced is thus 

�⃑� = 3�⃑� 𝑠𝑒𝑔 1𝑧 =
3𝜇0𝐼

4𝜋
�̂� ∫

ℎ 𝑑𝑦

(ℎ2 + 𝑦2 + 𝑧2)3/2

+𝑠/2

−𝑠/2

 

From here the integral is doable but a bit ugly. 

More on the next page… 

𝑑 
ℎ 

30° 

𝑠

2
 

ℎ 

𝑦 

𝑧 

𝑖̂ 

𝑗̂ 

�̂� 

𝐓𝐎𝐏 𝐕𝐈𝐄𝐖 

𝐒𝐈𝐃𝐄 𝐕𝐈𝐄𝐖 



First note that both ℎ and 𝑧 are constants for the integral.  To clean things up I choose to let 

𝛼2 = ℎ2 + 𝑧2 

Also, because the integral is an even function with symmetric limits we can cut the limits in half and multiply by 

two.  We now have 

�⃑� =
6𝜇0𝐼ℎ

4𝜋
�̂� ∫

𝑑𝑦

(𝑦2 + 𝛼2)3/2

𝑠/2

0

 

�⃑� =
3𝜇0𝐼ℎ

2𝜋
�̂� ∫

𝑑𝑦

(𝑦2 + 𝛼2)3/2

𝑠/2

0

 

 

An integral table gives me 

∫
𝑑𝑥

(𝑥2 + 𝑎2)3/2
=

𝑥

𝑎2√𝑥2 + 𝑎2
 

This gives 

�⃑� =
3𝜇0𝐼ℎ

2𝜋
�̂� [

𝑦

𝛼2√𝑦2 + 𝛼2
]

0

𝑠/2

 

�⃑� =
3𝜇0𝐼ℎ

2𝜋

𝑠/2

𝛼2√𝑠2

4
+ 𝛼2

�̂� 

Now some the ugly part.  Recall from the very beginning ℎ =
𝑠

2√3
.  This gives 𝛼2 =

𝑠2

12
+ 𝑧2.  Plugging in this 

garbage gives 

�⃑� =

3𝜇0𝐼 (
𝑠

2√3
) 

2𝜋

𝑠/2

(
𝑠2

12
+ 𝑧2)√

𝑠2

4
+ (

𝑠2

12
+ 𝑧2)

�̂� 

Cleaning up all that crap gives the final result 

�⃑� =
√3𝜇0𝐼 

8𝜋

𝑠2

(
𝑠2

12
+ 𝑧2)√𝑠2

3
+ 𝑧2

�̂� 

We have already checked the direction.  Is there another way to check this result?  I can check in several ways. 

1) Always check the units.  We expect results for �⃑�  should have 𝜇0𝐼 on top and meters on bottom. Check! 

2) Consider the result if 𝑧 = 0.  This is a much simpler problem.  You should be able to do this one for an 

exam.  I did this check and the results agreed.  �⃑� 𝑧=0 =
9 

2𝜋

𝜇0𝐼

𝑠
. 

3) For large values of 𝑧 (𝑧 ≫ 𝑠) the magnetic field should be given by �⃑� ≈
𝜇0 

2𝜋

�⃑⃑� 

𝑧3 where 𝜇 = 𝐼𝐴  is the 

magnetic moment of the loop.  I did this check and the results agreed.  �⃑� 𝑧≫𝑠 =
√3 

8𝜋

𝜇0𝐼𝑠2

𝑧3 . 

4) I was able to dig around and find the result for a square loop of wire.  This result was 

�⃑� 𝑠𝑞𝑢𝑎𝑟𝑒 =
𝜇0𝐼 

2𝜋

𝑠2

(
𝑠2

4
+ 𝑧2)√𝑠2

2
+ 𝑧2

�̂� 

I notice this result has a similar form. 

  



29.15½  It is easier to label large figures…make yours large. 

Segments are labeled in the figure shown at right. 

 

SEGMENT 2 

Segment 𝟐 produces no contribution since current in segment 

𝟐 runs radially towards the point of interest. 

 

SEGMENT 3 

From the original figure, we know the circular arc comprises 
240°

360°
=

2

3
 of an entire circle.  Direction from right hand rule. 

�⃑� 3 =
2

3
∙
𝜇0𝐼

2𝜋𝑟
�̂� ≈ 0.10610

𝜇0𝐼

𝑟
�̂� 

 

 

SEGMENT 1 

First I determine the perpendicular bisector distance as 

𝑎 =
𝑟

3
cos 30° =

𝑟

2√3
 

Now use  

𝐵1 =
𝜇0𝐼

   4𝜋 (
𝑟

2√3
)   

(sin 𝜃𝑓 − sin 𝜃𝑖) 

Since both angles 𝜃𝑖  & 𝜃𝑓 lie on the same side of the perpendicular bisector they should use the same sign. 

Since I want field magnitude, I should make both angles negative (or absolute value the result to get a magnitude). 

𝐵1 =
𝜇0𝐼

   4𝜋 (
𝑟

2√3
)   

[sin(−60°) − sin(−90°)] 

�⃑� 1 =
√3𝜇0𝐼

   4𝜋𝑟   
�̂� ≈ 0.13783

𝜇0𝐼

𝑟
�̂�       direction from right hand rule 

 

SEGMENT 4 

First I determine the perpendicular bisector distance as 

𝑎 = 𝑟 cos 60° =
𝑟

2
 

Now use  

𝐵4 =
𝜇0𝐼

   4𝜋 (
𝑟
2
)   

(sin 𝜃𝑓 − sin 𝜃𝑖) 

Since both angles 𝜃𝑖  & 𝜃𝑓 lie on the same side of the perpendicular bisector they should use the same sign. 

Since I want field magnitude, I should make both angles negative (or absolute value the result to get a magnitude). 

𝐵4 =
𝜇0𝐼

   4𝜋 (
𝑟
2
)   

[sin(−30°) − sin(−90°)] 

�⃑� 4 = (2 − √3)
𝜇0𝐼

4𝜋𝑟
(−�̂�) ≈ 0.02132

𝜇0𝐼

𝑟
(−�̂�)        direction from right hand rule 

Recall we were told �⃑� 𝑡𝑜𝑡𝑎𝑙 = 𝐵�̂�. From this one finds 

𝐵�̂� = �⃑� 1 + �⃑� 3 + �⃑� 4 ≈ 0.2226
𝜇0𝐼

𝑟
�̂� 

𝑰 ≈ 𝟒. 𝟒𝟗
𝒓

𝝁𝟎𝑩
 

P 

𝑟

3
cos30° 

𝑟 cos60° 

1 

2 

3 

4 



29.16  

Consider a small slice of the solenoid as a coil. 

The general result for the field created by a coil is 

�⃑� 𝑐𝑜𝑖𝑙 =
𝜇0𝑁𝑐𝐼𝑟

2

2(𝑟2 + 𝑧𝑐
2)3/2

�̂� 

Here 𝑧𝑐 is distance from the center of the coil (along the axis of the coil). 

Watch out!  Here 𝑁𝑐 is the number of turns in the coil (not the solenoid). 

 

In the problem statement, we defined 𝑧 as the distance from the center of the solenoid. 

We also stated the solenoid had 𝑁 turns. 

Please notice the distinctions between 𝑧 & 𝑧𝑐 and 𝑁 & 𝑁𝑐. 

 

�⃑� 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑 = 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙 �⃑� 𝑐𝑜𝑖𝑙  𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 

�⃑� 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑 = ∫ 𝑑�⃑� 𝑐𝑜𝑖𝑙

𝑓

𝑖

 

�⃑� 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑 = ∫
𝜇0𝑁𝑐𝐼𝑟

2

2(𝑟2 + 𝑧𝑐
2)3/2

�̂�
𝑓

𝑖

 

Perhaps you are wondering where the differential is hiding? 

Consider the number of turns in the coil. 

Our particular coil is some tiny thickness 𝑑𝑧𝑐. 

We know the solenoid uses 𝑛 =
𝑁

𝐿
 turns per unit length. 

Therefore 

𝑁𝑐 = 𝑛 𝑑𝑧𝑐  

�⃑� 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑 = ∫
𝜇0𝑛𝐼𝑟2𝑑𝑧𝑐

2(𝑟2 + 𝑧𝑐
2)3/2

�̂�
𝑧+

𝐿
2

𝑧−
𝐿
2

 

�⃑� 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑 =
𝜇0𝑛𝐼𝑟2�̂�

2
∫

𝑑𝑧𝑐

(𝑟2 + 𝑧𝑐
2)3/2

𝑧+
𝐿
2

𝑧−
𝐿
2

 

From the integral table one finds 

�⃑� 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑 =
𝜇0𝑛𝐼𝒓𝟐�̂�

2
(

𝑧𝑐

𝒓𝟐√𝑟2 + 𝑧𝑐
2
)

𝑧−
𝐿
2

𝑧+
𝐿
2

 

Notice the bold 𝒓𝟐 in the numerator out front and the denominator inside the parentheses will cancel! 

�⃑� 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑 =
𝜇0𝑛𝐼

2

(

 
𝑧 +

𝐿
2

√𝑟2 + (𝑧 +
𝐿
2
)
2
−

𝑧 −
𝐿
2

√𝑟2 + (𝑧 −
𝐿
2
)
2

)

 �̂� 

 

WATCH OUT! This equation was derived using  

�⃑� 𝑐𝑜𝑖𝑙 =
𝜇0𝑁𝑐𝐼𝑟

2

2(𝑟2 + 𝑧𝑐
2)3/2

�̂� 

This formula for the coil is only valid along the axis of the coil! 

As such, our solenoid formula is only valid along the axis of the solenoid.  

𝑧 

𝑖̂ 

𝑗̂ 

�̂� 

𝒛𝒄 

𝑧
−

𝐿2  

𝑧
+

𝐿2  



29.17  

In part a we are asked to rank the magnitudes of the net external field at wire A caused by the other two wires. 

First get the direction of ach contribution using a right hand rule: 

1. Point your right thumb in direction of current 

2. Fingers or right hand curl around the wire in the direction of �⃑� ). 

Note: recall the field magnitude for an INFINITE straight wire is 

𝐵∞ 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑤𝑖𝑟𝑒 =
𝜇𝑜𝐼

2𝜋𝑟
 

This implies wires farther away produce smaller field contributions. 

 

My pictures below show the NET field at each wire 𝐀 in purple. 

𝑩𝟏 > 𝑩𝟑 > 𝑩𝟐 

 

In part b we determine direction of force on wire 𝐀 caused by the net field produced by the other two wires.   

Since all wires are nearly infinite, �⃑� 𝑒𝑥𝑡 to wire 𝐀 has uniform magnitude & direction at every point along wire 𝐀.   

When this is true: 

𝐹 𝑜𝑛 𝑤𝑖𝑟𝑒 𝐀 = 𝐼𝑤𝑖𝑟𝑒 𝐀�⃑� 𝑤𝑖𝑟𝑒 𝐀 × �⃑� 𝑒𝑥𝑡  

 

To get the direction of this cross-product, use the following right hand rule: 

1. Align the fingers of your right hand in the direction of the current 𝐼𝑤𝑖𝑟𝑒 𝐀. 

2. Curl your fingers to the direction of the external field �⃑� 𝑒𝑥𝑡 . 

3. Thumb points in the direction of the force. 

 

 

 

�⃑⃑� 𝒐𝒏 𝒘𝒊𝒓𝒆 𝐀 points up & to the left, slightly closer to the vertical axis. 

 

 

  

𝑑 𝐷 

𝐀 

𝑑 𝐷 

𝐀 

𝑑 

𝐷 

𝐀 

𝐂𝐚𝐬𝐞 𝟏 𝐂𝐚𝐬𝐞 𝟑 𝐂𝐚𝐬𝐞 𝟐 

�⃑⃑� 𝟏𝑵𝑬𝑻 

�⃑⃑� 𝟐𝑵𝑬𝑻 

�⃑⃑� 𝟑𝑵𝑬𝑻 

�⃑⃑� 𝒐𝒏 𝒘𝒊𝒓𝒆 𝑨 

𝐷 

𝐀 

𝐂𝐚𝐬𝐞 𝟑 

�⃑⃑� 𝟑𝑵𝑬𝑻 = �⃑⃑� 𝒆𝒙𝒕 



29.18  

a) The loops each carry the same current.   

The field produced by a coil has magnitude 

𝐵𝑐𝑜𝑖𝑙 =
𝜇0𝑁𝐼𝑟2

2(𝑟2 + 𝑧2)3/2
 

At the origin we may set 𝒛 = 𝟎 giving 

𝐵𝑐𝑜𝑖𝑙 =
𝜇0𝐼

2𝑟
 

Here I assumed each loop has 𝑁 = 1 unless otherwise specified. 

The smaller loop produces a larger field vector at the origin. 

It is impossible for these two field vectors to completely cancel each other because they have different 

magnitudes! 

b) Using the figures at right I found 

�⃑� 1 =
𝜇0𝐼

2𝑎1

(sin 𝜃 𝑖̂ + cos 𝜃 �̂�) 

�⃑� 2 =
𝜇0𝐼

2𝑎2

(�̂�) 

�⃑� 𝑁𝐸𝑇 = �⃑� 1 + �⃑� 2 

�⃑� 𝑁𝐸𝑇 =
𝜇0𝐼

2
{
1

𝑎1

sin 𝜃 𝑖̂ + (
1

𝑎1

cos 𝜃 +
1

𝑎2

) �̂�} 

Note: in part c we were asked to plot field MAGNITUDE! 

To keep it all on the same page in the sol’ns, I’ll get magnitude now. 

𝐵𝑁𝐸𝑇 =
𝜇0𝐼

2
√(

1

𝑎1

sin 𝜃)
2

+ (
1

𝑎1

cos 𝜃 +
1

𝑎2

)
2

 

𝐵𝑁𝐸𝑇 =
𝜇0𝐼

2
√(

1

𝑎1

sin 𝜃)
2

+ (
1

𝑎1

cos 𝜃)
2

+ (
1

𝑎2

)

2

+
2

𝑎1𝑎2

cos 𝜃 

𝐵𝑁𝐸𝑇 =
𝜇0𝐼

2
√

1

𝑎1
2 +

1

𝑎2
2 +

2

𝑎1𝑎2

cos 𝜃 

𝐵𝑁𝐸𝑇 =
(4𝜋 × 10−7 T ∙ m

A
) (5.00 A)

2
√

1

(0.12 m)2
+

1

(0.15 m)2
+

2

(0.12 m)(0.15 m)
cos 𝜃 

𝑩𝑵𝑬𝑻 = (𝟑. 𝟏𝟒𝟐 × 𝟏𝟎−𝟔√𝟏𝟏𝟑. 𝟗 + 𝟏𝟏𝟏. 𝟏 𝐜𝐨𝐬 𝜽) in units of T 

 

Solution continues on the next page… 

  

Slanted side view 

Pure side view 

𝜃 

𝑖̂ 

𝑗̂ 

�̂� 

𝜃 
𝑖̂ 

�̂� �⃑� 1 
�⃑� 2 



c) We are asked to make a plot of field magnitude versus angle. 

Notice the magnitude of the net field never drops completely to zero. 

The field magnitude does reach a minimum at 180°.  This makes sense.   

When the smaller loop is inverted the two field directions are in opposition. 

 
 

d) We are asked which angles cause maximum/minimum torque on the loop. 

I find the following equation is helpful when considering torques on loops. 

𝜏 = 𝜇 × �⃑� 𝑒𝑥𝑡  

Recall 𝜇  points in the direction of the area vector of the loop. 

No torque occurs when 𝜇  (from loop 1) & �⃑� 𝑒𝑥𝑡  (caused by loop 2) are parallel (or anti-parallel)! 

We expect zero torque when 𝜃 = 0°   &   180°. 

 

We expect torque (magnitude) is largest when �⃑� 𝑒𝑥𝑡  (caused by loop 2) is perpendicular to 𝜇 . 

We expect torque (magnitude) is largest when �⃑� 𝑒𝑥𝑡  (caused by loop 2) is in the plane of the loop. 

We expect maximum torque (magnitude) when 𝜃 = 90°   &   270°. 
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29.19  

a) Use the superposition principle to sum the fields created 

by each ring.   

�⃑� 𝑡𝑜𝑡𝑎𝑙 = �⃑� 1 + �⃑� 2 

Recall the magnetic field (magnitude) produced by a 

current-carrying coil is 

𝐵𝑐𝑜𝑖𝑙 =
𝜇0𝑁𝐼𝑟2

2(𝑟2 + 𝑧)3/2
 

In this formula, 𝑧 is the distance from the center of the 

coil.  To add the fields of our two coils together, we must 

consider using 𝑧1 = 𝑧 +
𝑑

2
 & 𝑧2 = 𝑧 −

𝑑

2
 as shown in the 

figure at right.  

 

�⃑� 𝑡𝑜𝑡𝑎𝑙 =
𝜇0𝑁𝐼𝑟2

2(𝑟2 + 𝒛𝟏
𝟐)3/2

�̂� +
𝜇0𝑁𝐼𝑟2

2(𝑟2 + 𝒛𝟐
𝟐)3/2

�̂� 

�⃑� 𝑡𝑜𝑡𝑎𝑙 =
𝜇0𝑁𝐼𝑟2�̂�

2
{

1

(𝑟2 + 𝒛𝟏
𝟐)3/2

+
1

(𝑟2 + 𝒛𝟐
𝟐)3/2

} 

�⃑� 𝑡𝑜𝑡𝑎𝑙 =
𝜇0𝑁𝐼𝑟2�̂�

2

{
 
 

 
 

1

(𝑟2 + (
𝑑
2

+ 𝒛)
2

)

3/2
+

1

(𝑟2 + (
𝑑
2

− 𝒛)
2

)

3/2

}
 
 

 
 

 

b) When one sets 𝑑 = 𝑟 one finds 

�⃑� 𝑡𝑜𝑡𝑎𝑙 =
𝜇0𝑁𝐼𝑟2�̂�

2

{
 

 
1

(𝑟2 + (
𝑟
2

+ 𝒛)
2

)
3/2

+
1

(𝑟2 + (
𝑟
2

− 𝒛)
2

)
3/2

}
 

 

 

I suppose you could leave it as is, but I notice I can factor out an 𝑟3 from the denominators… 

�⃑� 𝑡𝑜𝑡𝑎𝑙 =
𝜇0𝑁𝐼𝑟2�̂�

2

{
 
 

 
 

1

(𝑟2 + 𝑟2 (
1
2

+
𝒛
𝒓
)
2

)

3/2
+

1

(𝑟2 + 𝑟2 (
1
2

−
𝒛
𝒓
)
2

)

3/2

}
 
 

 
 

 

�⃑� 𝑡𝑜𝑡𝑎𝑙 =
𝜇0𝑁𝐼𝑟2�̂�

2

{
 
 

 
 

1

𝑟3 (1 + (
1
2

+
𝒛
𝒓
)
2

)

3/2
+

1

𝑟3 (1 + (
1
2

−
𝒛
𝒓
)
2

)

3/2

}
 
 

 
 

 

�⃑� 𝑡𝑜𝑡𝑎𝑙 =
𝜇0𝑁𝐼�̂�

2𝑟

{
 
 

 
 

1

(1 + (
1
2

+
𝒛
𝒓
)
2

)

3/2
+

1

(1 + (
1
2

−
𝒛
𝒓
)
2

)

3/2

}
 
 

 
 

 

�⃑� 𝑡𝑜𝑡𝑎𝑙 =
𝜇0𝑁𝐼�̂�

2𝑟

{
 

 
1

(
5
4

+
𝑧
𝑟
+

𝑧2

𝑟2)
3/2

+
1

(
5
4

−
𝑧
𝑟
+

𝑧2

𝑟2)
3/2

}
 

 

 

Not much better, but perhaps slightly easier to work with. 

Solution continues on next page… 

  

𝑧 = 0 

𝑑 = 𝑐𝑜𝑖𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 

𝑧 

𝑧1 𝑧2 



c) At the origin we set 𝑧 = 0 to find 

�⃑� 𝑡𝑜𝑡𝑎𝑙 =
𝜇0𝑁𝐼�̂�

2𝑟
{

1

(
5
4
)
3/2

+
1

(
5
4
)
3/2

} 

�⃑� 𝑡𝑜𝑡𝑎𝑙 = (
4

5
)
3/2 𝜇0𝑁𝐼�̂�

𝑟
 

d) I will take the derivative using the formula 

�⃑� 𝑡𝑜𝑡𝑎𝑙 =
𝜇0𝑁𝐼𝑟2�̂�

2
{

1

(𝑟2 + (𝑑 + 𝒛)2)3/2
+

1

(𝑟2 + (𝑑 − 𝒛)2)3/2
} 

𝑑

𝑑𝑧
�⃑� 𝑡𝑜𝑡𝑎𝑙 =

𝜇0𝑁𝐼𝑟2�̂�

2

𝑑

𝑑𝑧
{

1

(𝑟2 + (𝑑 + 𝒛)2)3/2
+

1

(𝑟2 + (𝑑 − 𝒛)2)3/2
} 

𝑑

𝑑𝑧
�⃑� 𝑡𝑜𝑡𝑎𝑙 =

𝜇0𝑁𝐼𝑟2�̂�

2
{
𝑑

𝑑𝑧
(𝑟2 + (𝑑 + 𝒛)2)−3/2 +

𝑑

𝑑𝑧
(𝑟2 + (𝑑 − 𝒛)2)−3/2} 

𝑑

𝑑𝑧
�⃑� 𝑡𝑜𝑡𝑎𝑙 =

𝜇0𝑁𝐼𝑟2�̂�

2
{(−

3

2
) (𝑟2 + (𝑑 + 𝒛)2)−

5
2 (

𝑑

𝑑𝑧
(𝑑 + 𝒛)2) + (−

3

2
) (𝑟2 + (𝑑 − 𝒛)2)−

5
2 (

𝑑

𝑑𝑧
(𝑑 − 𝒛)2)} 

𝑑

𝑑𝑧
�⃑� 𝑡𝑜𝑡𝑎𝑙 =

𝜇0𝑁𝐼𝑟2�̂�

2
{(−

3

2
) (𝑟2 + (𝑑 + 𝒛)2)−

5
2(2)(𝑑 + 𝒛)(+1) + (−

3

2
) (𝑟2 + (𝑑 − 𝒛)2)−

5
2(2)(𝑑 − 𝒛)(−1)} 

𝑑

𝑑𝑧
�⃑� 𝑡𝑜𝑡𝑎𝑙 =

𝜇0𝑁𝐼𝑟2�̂�

2
{

−3(𝑑 + 𝒛)

(𝑟2 + (𝑑 + 𝒛)2)−
5
2

+
+3(𝑑 − 𝒛)

(𝑟2 + (𝑑 − 𝒛)2)−
5
2

} 

Now we can set 𝑧 = 0 to find 

𝑑

𝑑𝑧
�⃑� 𝑡𝑜𝑡𝑎𝑙 =

𝜇0𝑁𝐼𝑟2�̂�

2
{

−3𝑑

(𝑟2 + 𝑑2)−
5
2

+
+3𝑑

(𝑟2 + 𝑑2)−
5
2

} 

𝑑

𝑑𝑧
�⃑� 𝑡𝑜𝑡𝑎𝑙 = 0 

Going further: if you are particularly masochistic, you can discover 
𝑑2�⃑� 𝑡𝑜𝑡𝑎𝑙

𝑑𝑧2 = 0  & 
𝑑3�⃑� 𝑡𝑜𝑡𝑎𝑙

𝑑𝑧3 = 0  WHEN 𝒅 = 𝑹!!! 

 

Why care? These results show �⃑� 𝑡𝑜𝑡𝑎𝑙 is extremely uniform inside Helmholtz coils (midway between the coils). 

Helmholtz coils can produce somewhat strong fields that are nearly uniform while also making it easy to access the 

region of magnetic field.  It is also easy to vary the size of the field (by varying the current delivered to the coils). 

 

Helmholtz coils are useful for doing experiments which require a uniform external magnetic field. 

 

  



29.20 

a) Two alternative solutions are provided below this first solution: 

The long straight wire is the source of �⃑� 𝑒𝑥𝑡  for the rectangular loop. 

The magnitude of the field created by the straight wire is 

𝐵𝑒𝑥𝑡 =
𝜇0𝐼

2𝜋𝑦
 

where 𝑟 = 𝑦 is distance from the straight wire (for this case).  

Using the right hand rule for straight wires gives the direction. 

�⃑� 𝑒𝑥𝑡 =
𝜇0𝐼

2𝜋𝑦
�̂� 

One expects the force on segments 2 & 4 to be of equal size but opposite 

directions (regardless of current direction in the loop). 

We expect the forces on segments 1 & 3 to also be in opposite directions. 

HOWEVER we expect the force on segment 1 to be stronger than the force on segment 3. 

This is because the field is stronger at segment 1’s position. 

 

Since we are told the net force on the loop is upwards, we know the force on 

segment 1 must be upwards. 

I can now use trial and error on segment 1 to figure out which direction (for current 

flow in the loop) causes an upwards force on segment 1. 

I tried both clockwise and counter-clockwise loop currents.  

Current in the loop must flow COUNTER-clockwise. 

 

Alternative solution 1:   

Magnetic fields produced by currents tend to align themselves with each other. 

The magnetic field produced by the loop points either into or out of the page (at 

every point in the plane of the figure). 

Since we are told the loop is attracted to the straight wire, we know it must be 

producing a field oriented the same direction as the long straight wire. 

This occurs when current in the loop flows COUNTER-clockwise. 

 

Alternative solution 2:   

Segment 1 is the closet to the long straight wire, we know the force on it dominates the force on the loop. 

Therefore, we need the force on segment 1 to point upwards. 

We know like charges repel…but like currents attract. 

This implies current in the loop flows COUNTER-clockwise. 

 

b) There is zero torque on the loop.   

The force on each segment points away from the center of the loop. 

The loop is under tension. 

 

Solution continues on the next page… 

  

1 

2 
3 

4 

𝑖 ̂

𝑗̂ 

1 

2 
3 

4 

𝑖 ̂

𝑗̂ 

𝐹 𝑜𝑛1 

�⃑� 𝑜𝑛3 

�⃑� 𝑜𝑛2 
�⃑� 𝑜𝑛4 



c) All of segment 1 is distance 𝑦 = 𝑑 from the straight wire. 

This implies  

�⃑� 𝑒𝑥𝑡 = (
𝜇0𝐼

2𝜋𝑑
�̂�) 

Notice �⃑� 𝑒𝑥𝑡  is uniform along the entire length of segment 1. 

We don’t need to integrate to find the force. 

𝐹 𝑜𝑛1 = 𝐼𝑙𝑜𝑜𝑝�⃑� 1 × �⃑� 𝑒𝑥𝑡  

I'm assuming the longer dimension of the loop in the figure implies length 2𝑑. 

𝐹 𝑜𝑛1 = 𝐼(−2𝑑𝑖̂) × (
𝜇0𝐼

2𝜋𝑑
�̂�) 

�⃑⃑� 𝒐𝒏𝟏 =
𝝁𝟎𝑰

𝟐

𝝅
𝒋̂ 

 

Segment 3 is twice as far from the wire which cuts �⃑� 𝑒𝑥𝑡  by a factor of 2 (direction of �⃑� 𝑒𝑥𝑡  unchanged). 

The current runs the other direction (which flips the force direction). 

�⃑⃑� 𝒐𝒏𝟐 = −
𝝁𝟎𝑰

𝟐

𝟐𝝅
𝒋 ̂

 

For segment 2 one uses 

𝐹 𝑜𝑛2 = ∫ 𝑑𝑠 ×
𝑦=2𝑑

𝑦=𝑑

�⃑� 𝑒𝑥𝑡  

𝐹 𝑜𝑛2 = ∫ (𝐼 𝑑𝑦 𝑗̂) ×
𝑦=2𝑑

𝑦=𝑑

(
𝜇0𝐼

2𝜋𝑦
�̂�) 

𝐹 𝑜𝑛2 =
𝜇0𝐼

2

2𝜋
∫

𝑑𝑦

𝑦

𝑦=2𝑑

𝑦=𝑑

(𝑗̂ × �̂�) 

�⃑⃑� 𝒐𝒏𝟐 =
𝝁𝟎𝑰

𝟐 𝐥𝐧 𝟐

𝟐𝝅
�̂� 

�⃑⃑� 𝒐𝒏𝟐 ≈ 𝟎. 𝟑𝟒𝟕
𝝁𝟎𝑰

𝟐

𝝅
�̂� 

 

Finally, one expects the force on segment 4 should be equal in size, but opposite in direction to, the force 

on segment 2. 

�⃑⃑� 𝒐𝒏𝟒 ≈ −𝟎. 𝟑𝟒𝟕
𝝁𝟎𝑰

𝟐

𝝅
�̂� 

 

Note: a student suggested this integral should actually be  

𝐹 𝑜𝑛2 = ∫ 𝑑𝑠 ×
𝑦=−𝑑

𝑦=−2𝑑

�⃑� 𝑒𝑥𝑡 

When working the integral out this way one gets ln
1

2
 instead of ln 2. 

While at first glance this seems to cause serious problems, keep in mind ln
1

2
= ln 2−1 = − ln 2. 

Doing the integral this way implies a sign flip which could always be checked using a right hand rule… 

  



29.20½ Consider the augmented figure shown below. 

a) I used the right hand rule to determine the direction of the positive z-axis. 

I curl my fingers in the direction of current to determine the direction of the magnetic moment vector. 

Notice that at all points in the plane of the loop, if you look very carefully at each iron filing, every magnetic field 

vector is pointing in the −�̂� direction.   

How can I tell the difference between ±�̂�?  I can’t…but I know the right hand rule for the direction of �⃑�  at the 

center of a coil and I use that to determine the direction. 

b) For a flat surface, we are free to choose the either direction perpendicular to the surface. To me it makes the most 

sense to say the area vector of the loop points the same direction as the magnetic moment vector (in this case −�̂�). 

c) Magnetic flux is non-zero since  

1) �⃑�  & 𝐴  point the same way and 

2) Φ𝐵 = ∫ �⃑�  ∙ 𝑑𝐴 = ∫ 𝐵 cos 𝜃𝐵𝐴  𝑑𝐴 

If �⃑�  & 𝐴  point the same way the angle 𝜃𝐵𝐴 = 0° which implies cos 𝜃𝐵𝐴 = 1.  The integral should turn out non-zero.  

  

+𝒚 

+𝒙 

+𝒛 

�⃑⃑�  
𝒊 



29.21 

a) With respect to angle, max mag flux occurs when the loop area vector and �⃑� 𝑒𝑥𝑡 point in the same direction. 

This occurs for cases 1 & 2. 

Because �⃑� 𝑒𝑥𝑡  gets weaker farther from the straight wire, we expect Case 1 should have more field lines 

penetrating it (compared to Case 2). 

 

Case 1 experiences the largest magnetic flux. 

 

b) The magnetic flux computation is 

Φ𝐵 = ∫ �⃑� 𝑒𝑥𝑡 ∙ 𝑑𝐴 
𝑓

𝑖

 

Since we have a flat loop, we are free to choose the direction of the 

area vector as we see fit.  For curved loops, one generally chooses 

radially outwards as the surface direction.  In this case, I choose to 

have the area vector direction match the direction of �⃑� 𝑒𝑥𝑡 . 

Φ𝐵 = ∫ (−
𝜇0𝐼

2𝜋𝑥
�̂�) ∙ (𝑎 𝑑𝑥(−�̂�))

𝑐+𝑏

𝑐

 

Φ𝐵 = ∫
𝜇0𝐼𝑎

2𝜋𝑥
 𝑑𝑥

𝑐+𝑏

𝑐

 

Φ𝐵 =
𝜇0𝐼𝑎

2𝜋
ln |

𝑐 + 𝑏

𝑐
| 

𝚽𝑩 =
𝝁𝟎𝑰𝒂

𝟐𝝅
𝐥𝐧 |𝟏 +

𝒃

𝒄
| 

Note: this type of calculation relates to electrical power generation. 

 

c) If we redid the computation for Case 2 the area vector and the limits would change. 

Φ𝐵 = ∫ (−
𝜇0𝐼

2𝜋𝑥
�̂�) ∙ (𝑏 𝑑𝑥(−�̂�))

𝑐+𝑎

𝑐

 

𝚽𝑩 =
𝝁𝟎𝑰𝒃

𝟐𝝅
𝐥𝐧 |𝟏 +

𝒂

𝒄
| 

 

d) Yes, flux is zero in both of those cases! 

In cases 3 & 4, I’m assuming the center of each loop is aligned with the straight wire. 

As such, these loop experience zero NET flux. 

Some field lines curve into the front half of each loop, but an equal number curve out of the back half. 

 

 

 

 

  

Case 1 

𝑐 

𝑥 

𝑏 

𝑎 

𝑑𝑥 



Problem 29.22 

To determine the direction of the solenoid’s field, use the right hand rule for coils 

of wire. 

1. Curl the fingers of your right hand in the direction of current in the coil. 

2. Thumb points in the direction of the filed created by the coil. 

 

We know the field of the solenoid is 

𝐵𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑 = 𝜇0𝑛𝐼 

in the center of the solenoid. 

 

At the end of the solenoid, we are told 

𝐵𝑒𝑥𝑡 =
1

2
𝐵𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑 =

𝜇0𝑛𝐼

2
 

 

Going away from the end of the solenoid, one expect the field lines to warp.  

That said, at all points in the square loop, just above the end of the solenoid, I am 

going to assume �⃑� 𝑒𝑥𝑡 is  

1. directed upwards 

2. approximately constant in size 

 

This simplifies the flux calculation immensely. 

Φ𝐵 = ∫ �⃑� 𝑒𝑥𝑡 ∙ 𝑑𝐴 
𝑓

𝑖

 

I choose to orient the area vector of the flat loop in Case 1 parallel to �⃑� 𝑒𝑥𝑡 . 

Φ𝐵 = ∫ 𝐵𝑒𝑥𝑡  𝑑𝐴
𝑓

𝑖

 

Φ𝐵 = ∫ (
𝜇0𝑛𝐼

2
)

𝑓

𝑖

 

Φ𝐵 =
𝜇0𝑛𝐼

2
∫  𝑑𝐴

𝑓

𝑖

 

Φ𝐵 =
𝜇0𝑛𝐼

2
𝐴 

We are told the main diagonal of the square loop matches the diameter of the solenoid. 

The main diagonal of a square loop has length 𝑠√2 (where 𝑠 is the side length of the square loop). 

Therefore 

𝑠√2 = 2𝑅 

𝑠 =
2

√2
𝑅 

𝐴 = 𝑠2 

𝐴 = 2𝑅2 

𝚽𝑩 = 𝝁𝟎𝒏𝑰𝑹𝟐 

For Case 2, flux is ZERO. 

The are vector is perpendicular to �⃑� 𝑒𝑥𝑡  at all points within the loop. 

29.22 Bonus Problem Solution continues on the next page… 

  

Case 1 Case 2 



29.22 Bonus Problem  

We are asked to think about the net force and torque on each loop. 

Be careful, there can only be a (magnetic) force or torque on the loop if we assume current runs in the loop. 

Also, net (magnetic) force on any loop is zero if �⃑� 𝑒𝑥𝑡  is uniform. 

In this case, the magnetic field is definitely non-uniform. 

 

This thought experiment is probably easiest to analyze by thinking about the magnetic moment 𝜇  of the loop. 

 

If 𝜇  in Case 1 is directed upwards, the field produced by the loop matches the field produced by the solenoid. 

The loop is attracted to the solenoid by the magnetic force and there is zero magnetic torque. 

 

If 𝜇  in Case 1 is directed downwards, the field produced by the loop opposes the field produced by the solenoid. 

The loop is repelled by the solenoid by the magnetic force and there is zero magnetic torque. 

 

If 𝜇  in Case 2 is directed into the page, the magnetic torque on the loop should try to align 𝜇  with �⃑� 𝑒𝑥𝑡 . 

This causes a torque in the +𝑖̂ direction (axis of torque is to the right). 

Note: the coil feels a slightly larger force into the page on the bottom segment than it does out of the page on the top 

segment. 

The net force is non-zero…but probably close to zero. 

It pushes the coil’s center of mass slightly into the page. 

 

If 𝜇  in Case 2 is directed out of the page, the magnetic torque on the loop should try to align 𝜇  with �⃑� 𝑒𝑥𝑡 . 

This causes a torque in the −𝑖̂ direction (axis of torque is to the left). 

Note: the coil feels a slightly larger force out of the page on the bottom segment than it does into the page on the top 

segment. 

The net force is non-zero…but probably close to zero. 

It pushes the coil’s center of mass slightly out of the page. 

 

  



29.23  

Case 1: 

a) & b) Are shown at right.  We are told current runs out of the page      

(producing the 𝐵-field shown at right). 

c) Notice �⃑�  always points tangent to the circular path. 

If we choose to travel around the circular loop in clockwise fashion, 

this implies �⃑�  is parallel to 𝑑𝑠 ). 

This implies  

∮ �⃑� ∙ 𝑑𝑠 
𝑓

𝑖

= ∮ 𝐵 𝑑𝑠
𝑓

𝑖

 

All points on the loop are equidistant from the wire. 

Therefore the magnitude of �⃑�  is constant as we travel around the loop. 

∮ 𝐵 𝑑𝑠
𝑓

𝑖

= 𝐵 ∮ 𝑑𝑠
𝑓

𝑖

= 𝐵𝑠 

 

d) All current is enclosed. 

e) The math is as follows 

𝐵𝑠 = 𝜇0𝐼𝑒𝑛𝑐 

𝐵2𝜋𝑟 = 𝜇0(𝑎𝑙𝑙 𝑜𝑓 𝑖𝑡) 

𝐵2𝜋𝑟 = 𝜇0𝐼 

𝑩 =
𝝁𝟎𝑰

𝟐𝝅𝒓
 

Note: we typically assume �̂� = − sin 𝜃 𝑖̂ + cos 𝜃 𝑗̂ implies going counter-clockwise around a circle. 

Since, in this case, the field is circling the wire counter-clockwise 

�⃑⃑� =
𝝁𝟎𝑰

𝟐𝝅𝒓
(+�̂�) 

 

Worth noting: remember 𝑟 is free to vary (different Amperian loop sizes could have been chosen). 

On the contrary, 𝑅 is a constant (the size of the wire is not changing). 

 

f) Units look good. 

 

 

 

Case 2 on the next page… 

  

𝑅 

𝑟 

𝐵𝑟>𝑅 
End View of Shell 

�⃑� 𝑒𝑥𝑡 



29.23 continued 

Case 2: 

a) See figure at right. 

b) For a uniformly distributed current 

𝐽 =
𝐼𝑡𝑜𝑡𝑎𝑙

𝐴𝑡𝑜𝑡𝑎𝑙

 

[𝐽] =
[𝐼𝑡𝑜𝑡𝑎𝑙]

[𝐴𝑡𝑜𝑡𝑎𝑙]
 

[𝐽] =
A

m2
 

c) Because current is uniformly distributed 

𝐽 =
𝐼𝑡𝑜𝑡𝑎𝑙

𝐴𝑡𝑜𝑡𝑎𝑙

 

𝐽 =
𝐼

𝜋𝑅2
 

 

d) Consider the lower figure at right. 

The goal is to compute contributions to the total current by computing how 

much current passes through each ring of radius �̃�. 

Notice this ring has a cross-sectional area 

𝑑𝐴 = 2𝜋�̃� 𝑑�̃� 

This in turns gives 

𝐵𝑠 = 𝜇0𝐼𝑒𝑛𝑐  

𝐵𝑠 = 𝜇0 ∫ 𝐽 𝑑𝐴
𝑟

0

 

𝐵𝑠 = 𝜇0 ∫
𝐼

𝜋𝑅2
 2𝜋�̃� 𝑑�̃�

𝑟

0

 

𝐵𝑠 =
2𝜇0𝐼

𝑅2
∫  �̃� 𝑑�̃�

𝑟

0

 

𝐵𝑠 =
2𝜇0𝐼

𝑅2
[
�̃�2

2
]
0

𝑟

  

𝐵𝑠 =
𝜇0𝐼𝑟

𝑅2
 

Recall, here 𝑠 = 2𝜋𝑟 is the total length around the Amperian loop. 

𝐵(2𝜋𝑟) =
𝜇0𝐼𝑟

2

𝑅2
 

𝑩 =
𝝁𝟎𝑰𝒓

𝟐𝝅𝑹𝟐
   →    �⃑⃑� =

𝝁𝟎𝑰𝒓

𝟐𝝅𝑹𝟐
(+�̂�) 

The units check. 

Also, notice the two formulas (from Case 1 & Case 2) match at the boundary 𝑟 = 𝑅. 

Remember 𝑟 is free to vary (different Amperian loop sizes could have been chosen). 

On the contrary, 𝑅 is a constant (the size of the wire is not changing). 

Solution continues on the next page… 

 

𝐵𝑟<𝑅 

End View of Shell 

𝑟 

𝑅 

𝐵𝑟<𝑅 

End View of Shell 

𝒓 

𝑹 

𝒓 



29.23 continued  

Finally, we make the graph and sketch the field around the wire. 

Tip: it is much easier to make the plot by assuming the following two things: 

1. Use 
𝜇0𝐼

2𝜋
= 1. 

2. Use 𝑅 = 1. 

If we make these assumptions, the field (magnitude) formulas become 

For 𝒓 < 𝑹 For 𝒓 > 𝑹 

𝑩 =
𝝁𝟎𝑰𝒓

𝟐𝝅𝑹𝟐
 

𝑩 = 𝒓   (in units of 
𝜇0𝐼

2𝜋𝑅
) 

𝑩 =
𝝁𝟎𝑰

𝟐𝝅𝒓
 

𝑩 =
𝟏

𝒓
   (in units of 

𝜇0𝐼

2𝜋𝑅
) 

 

 

 

 

 

 

 

 

 

  

Sketch showing relative sizes & directions of �⃑⃑�  near the wire 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

B (in units of m0I/2pR)

r (in units of R)



Ampere’s law in cylindrical symmetry shortcuts/summary 

Uniform cases on this page, non-uniform on next page.  Nested cylindrical shells (coax cable) to follow. 

 

Conditions Picture Equations 

Uniform, outside shell 

 

𝐵𝑠 = 𝜇0𝐼𝑒𝑛𝑐 

𝐵2𝜋𝑟 = 𝜇0(𝑎𝑙𝑙 𝑜𝑓 𝑖𝑡) 

𝐵2𝜋𝑟 = 𝜇0𝐼 

𝐵 =
𝜇0𝐼

2𝜋𝑟
 

Uniform, inside shell 

 

𝐵𝑠 = 𝜇0𝐼𝑒𝑛𝑐 

𝐵2𝜋𝑟 = 𝜇0(𝑠𝑜𝑚𝑒 𝑜𝑓 𝑖𝑡) 

𝐵2𝜋𝑟 = 𝜇0𝐼 (
𝐴𝐴𝑚𝑝𝑒𝑟𝑖𝑎𝑛

𝐴𝑇𝑜𝑡𝑎𝑙

) 

𝐵2𝜋𝑟 = 𝜇0𝐼 (
𝜋𝑟2 − 𝜋𝑎2

𝜋𝑏2 − 𝜋𝑎2
) 

𝐵 =
𝜇0𝐼

2𝜋𝑟
(
𝑟2 − 𝑎2

𝑏2 − 𝑎2
) 

 

  

𝑏 

𝑟 

𝐵𝑟>𝑏 
End View of Shell 

𝑎 

𝐵𝑎<𝑟<𝑏 

End View of Shell 

𝑟 
𝑎 

𝑏 



Conditions Picture Equations 

Non-uniform, outside shell 

For this example let 

𝐽 = 𝛼𝑟7 

𝐼𝑡𝑜𝑡𝑎𝑙 = ∫ 𝐽 𝑑𝐴
𝑏

𝑎

 

𝐼𝑡𝑜𝑡𝑎𝑙 = ∫ 𝛼�̃�7 (2𝜋�̃� 𝑑�̃�)
𝑏

𝑎

 

𝐼𝑡𝑜𝑡𝑎𝑙 = 2𝜋𝛼 ∫ �̃�8 𝑑�̃�
𝑏

𝑎

 

𝐼𝑡𝑜𝑡𝑎𝑙 =
2𝜋𝛼

9
(𝑏9 − 𝑎9) 

Therefore 

𝜶 =
𝟗𝑰𝒕𝒐𝒕𝒂𝒍

𝟐𝝅(𝒃𝟗 − 𝒂𝟗)
 

 

𝐵𝑠 = 𝜇0𝐼𝑒𝑛𝑐  

𝐵2𝜋𝑟 = 𝜇0(𝑎𝑙𝑙 𝑜𝑓 𝑖𝑡) 

𝐵2𝜋𝑟 = 𝜇0𝐼 

𝐵2𝜋𝑟 = 𝜇0 ∫ 𝐽 𝑑𝐴
𝑏

𝑎

 

𝐵2𝜋𝑟 = 𝜇0 ∫ 𝛼�̃�7 (2𝜋�̃� 𝑑�̃�)
𝑏

𝑎

 

𝐵2𝜋𝑟 = 2𝜋𝛼𝜇0

𝑟9

9
|
𝑎

𝑏

 

𝐵 =
𝜶𝜇0

9𝑟
(𝑏9 − 𝑎9) 

Note: if we eliminate 𝜶 using 

result shown in left column 

𝐵 = (
9𝐼𝑡𝑜𝑡𝑎𝑙

2𝜋(𝑏9 − 𝑎9)
)
𝜇0

9𝑟
(𝑏9 − 𝑎9) 

𝑩 =
𝝁𝟎𝑰𝒕𝒐𝒕𝒂𝒍

𝟐𝝅𝒓
 

Non-uniform, inside shell 

For this example let 

𝐽 = 𝛼𝑟7 

𝐼𝑡𝑜𝑡𝑎𝑙 = ∫ 𝐽 𝑑𝐴
𝑏

𝑎

 

𝐼𝑡𝑜𝑡𝑎𝑙 = ∫ 𝛼�̃�7 (2𝜋�̃� 𝑑�̃�)
𝑏

𝑎

 

𝐼𝑡𝑜𝑡𝑎𝑙 = 2𝜋𝛼 ∫ �̃�8 𝑑�̃�
𝑏

𝑎

 

𝐼𝑡𝑜𝑡𝑎𝑙 =
2𝜋𝛼

9
(𝑏9 − 𝑎9) 

Therefore 

𝜶 =
𝟗𝑰𝒕𝒐𝒕𝒂𝒍

𝟐𝝅(𝒃𝟗 − 𝒂𝟗)
  

𝐵𝑠 = 𝜇0𝐼𝑒𝑛𝑐  

𝐵2𝜋𝑟 = 𝜇0(𝑠𝑜𝑚𝑒 𝑜𝑓 𝑖𝑡) 

𝐵2𝜋𝑟 = 𝜇0𝐼 

𝐵2𝜋𝑟 = 𝜇0 ∫ 𝐽 𝑑𝐴
𝑟

𝑎

 

𝐵2𝜋𝑟 = 𝜇0 ∫ 𝛼�̃�7 (2𝜋�̃� 𝑑�̃�)
𝑟

𝑎

 

𝐵2𝜋𝑟 = 2𝜋𝛼𝜇0

𝑟9

9
|
𝑎

𝑟

 

𝐵 =
𝜶𝜇0

9𝑟
(𝑟9 − 𝑎9) 

Note: if we eliminate 𝜶 using 

result shown in left column 

𝐵 = (
9𝐼𝑡𝑜𝑡𝑎𝑙

2𝜋(𝑏9 − 𝑎9)
)
𝜇0

9𝑟
(𝑟9 − 𝑎9) 

𝑩 =
𝝁𝟎𝑰𝒕𝒐𝒕𝒂𝒍

𝟐𝝅𝒓

(𝒓𝟗 − 𝒂𝟗)

(𝒃𝟗 − 𝒂𝟗)
 

 

  

𝑏 

𝑟 

𝐵𝑟>𝑏 
End View of Shell 

𝑎 

�̃� 

𝐵𝑎<𝑟<𝑏 

End View of Shell 

𝑟 
�̃� 

𝑑�̃� 

𝑎 

𝑏 



29.24  

a) Current density (magnitude) for a uniform shell is given by 

𝐽 =
𝐼𝑡𝑜𝑡𝑎𝑙

𝐴𝑡𝑜𝑡𝑎𝑙

 

𝐽 =
𝐼

𝜋(3𝑅)2 − 𝜋(𝑅)2
 

𝐽 =
𝐼

8𝜋𝑅2
 

b) For 𝑟 < 𝑅 no current is enclosed…𝑩𝒓<𝑹 = 𝟎. 

For 𝑟 > 3𝑅, outside the entire shell, all current is enclosed.  
𝐵𝑠 = 𝜇0𝐼𝑒𝑛𝑐  

𝐵2𝜋𝑟 = 𝜇0(𝑎𝑙𝑙 𝑜𝑓 𝑖𝑡) 

𝐵2𝜋𝑟 = 𝜇0𝐼 

𝑩𝒓>𝟑𝑹 =
𝝁𝟎𝑰

𝟐𝝅𝒓
 

 

 

 

 

 

For 𝑅 < 𝑟 < 3𝑅, the Amperian loop lies inside the shell.  

When current is distributed uniformly enclosed current can be found using a 

ratio of the Amperian area to the total area of the shell. 

𝐵𝑠 = 𝜇0𝐼𝑒𝑛𝑐  

𝐵2𝜋𝑟 = 𝜇0(𝑠𝑜𝑚𝑒 𝑜𝑓 𝑖𝑡) 

𝐵2𝜋𝑟 = 𝜇0𝐼 (
𝐴𝐴𝑚𝑝𝑒𝑟𝑖𝑎𝑛

𝐴𝑇𝑜𝑡𝑎𝑙

) 

𝐵2𝜋𝑟 = 𝜇0𝐼 (
𝜋𝑟2 − 𝜋𝑅2

𝜋(3𝑅)2 − 𝜋𝑅2
) 

𝑩𝑹<𝒓<𝟑𝑹 =
𝝁𝟎𝑰

𝟐𝝅𝒓
(
𝒓𝟐 − 𝑹𝟐

𝟖𝑹𝟐
) 

 

 

Solution continues on the next page…  

3𝑅 

𝑟 

𝐵𝑟>3𝑅 
End View of Shell 

𝑅 

𝐵𝑅<𝑟<3𝑅 

End View of Shell 

𝑟 
𝑅 

3𝑅 



29.24c) A trick for making the plots is to set 
𝜇0𝐼

2𝜋
= 1 and 𝑅 = 1. 

Notice our formulas become 

𝑩𝒓<𝑹 = 𝟎 

𝑩𝑹<𝒓<𝟑𝑹 =
𝟏

𝒓
(
𝒓𝟐 − 𝟏

𝟖
) =

𝟏

𝟖
(𝒓 −

𝟏

𝒓
) 

𝑩𝒓>𝟑𝑹 =
𝟏

𝒓
 

Checking the concavity of the second term can now be easily done. 

Remember, we only require the SIGN of the second derivative to determine concavity. 

This term is concave down (negative 2nd derivative). 

 

29.24d) The problem statement says current flows out of the page. 

The right hand rule for straight wires helps: 

1. Align right thumb with current direction (of straight wire). 

2. Fingers of right hand curl around the wire in the direction of �⃑� . 

Based on this info, we expect the arrows to curl around the wire going 

counter-clockwise. 

Using the plot above, I can estimate the relative sizes of the arrows. 

My figure is shown at right. 
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29.25 

a) Use the given current density formula to find the units 

[𝐽] =
[𝛼]

[𝑟]
 

[𝛼] = [𝐽] ∙ [𝑟] 

[𝛼] =
A

m2
∙ m 

[𝛼] =
A

m
 

b) We know total current 𝐼 relates to density using 

𝐼 = ∫ 𝐽 𝑑𝐴
𝑓

𝑖

 

𝐼 = ∫
𝛼

�̃�
 (2𝜋�̃� 𝑑�̃�)

3𝑅

𝑅

 

𝐼 = 2𝜋𝛼 ∫ 𝑑�̃�
3𝑅

𝑅

 

𝐼 = 4𝜋𝛼𝑅 

Rearranging to solve for 𝛼 gives 

𝜶 =
𝑰

𝟒𝝅𝑹
 

c) We were told total current is 𝐼. 

If the Amperian loop is drawn outside of the entire wire (𝑟 > 3𝑅): 

𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝐼 

𝑩𝒓>𝟑𝑹 =
𝝁𝟎𝑰

𝟐𝝅𝒓
 

If the Amperian loop is inside the central air core (𝑟 < 𝑅): 

𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 0 

𝑩𝒓<𝑹 = 𝟎 

If the Amperian loop is inside the shell (𝑅 < 𝑟 < 3𝑅): 

𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝐼 

𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = ∫
𝛼

�̃�
 (2𝜋�̃� 𝑑�̃�)

𝑟

𝑅

 

𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 2𝜋𝛼 ∫ 𝑑�̃�
𝑟

𝑅

 

𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 2𝜋𝛼(𝑟 − 𝑅) 

To make comparing the formulas (and plotting) easier, we can use the 

result of part b (𝛼 =
𝐼

4𝜋𝑅
). 

𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 2𝜋 (
𝐼

4𝜋𝑅
) (𝑟 − 𝑅) 

𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 =
𝐼

2𝑅
(𝑟 − 𝑅) 

𝑩𝑹<𝒓<𝟑𝑹 =
𝝁𝟎𝑰

𝟐𝝅𝒓
∙
(𝒓 − 𝑹)

𝟐𝑹
 

Solution continues on the next page… 

 

𝑟 
�̃� 

𝑅 

3𝑅 

�̃� 
𝑅 

3𝑅 



29.25 continued 

In the air core Inside the bulk of the shell Outside the shell 

𝐵𝑟<𝑅 = 0 𝐵𝑅<𝑟<3𝑅 =
𝜇0𝐼

2𝜋𝑟
∙
(𝑟 − 𝑅)

2𝑅
 𝐵𝑟>3𝑅 =

𝜇0𝐼

2𝜋𝑟
 

 

Verify the following: 

• Does 𝐵𝑟<𝑅 = 𝐵𝑅<𝑟<3𝑅 when you plug in 𝑟 = 𝑅 to both formulas? 

• Does 𝐵𝑟>3𝑅 = 𝐵𝑅<𝑟<3𝑅 when you plug in 𝑟 = 3𝑅 to both formulas? 

I verified it. 

Now re-write these formulas using the standard trick of setting 
𝜇0𝐼

2𝜋
= 1  &  𝑅 = 1: 

In the air core Inside the bulk of the shell Outside the shell 

𝐵𝑟<𝑅 = 0 𝐵𝑅<𝑟<3𝑅 =
(𝑟 − 1)

2𝑟
=

1

2
∙ (1 −

1

𝑟
) 𝐵𝑟>3𝑅 =

1

𝑟
 

 

 Make a table of values (see figure at right). 

 

Check the concavity of any tricky terms. 

The middle field is tricky. 

Two derivatives of the constant terms will drop out. 

The sign is thus determined by two derivatives of the −
1

𝑟
 term. 

The second derivative is negative…this implies concave down. 
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29.26 

a) We know the units of a function are “no units”. 

Checking units of the current density formula gives  

[𝐽] = [𝛼][𝑟][𝑒−𝛽𝑟] 
A

m2
= [𝛼] ∙ m ∙ (no units) 

[𝜶] =
𝐀

𝐦𝟑
 

We also know the units of the argument of a function are “no units”. 

This implies 

[−𝛽𝑟] = no units 

The minus sign has no effect on the units; said another way: [−1] = no units. 

[𝛽][𝑟] = no units 

[𝛽] =
no units

[𝑟]
 

[𝜷] =
𝟏

𝐦
 

 

b) For a uniform distribution of current one knows 𝐽 =
𝐼𝑡𝑜𝑡𝑎𝑙

𝐴𝑡𝑜𝑡𝑎𝑙
…but this wire has NON-UNIFORM current density. 

Use 

𝐼𝑡𝑜𝑡𝑎𝑙 = ∫ 𝐽 𝑑𝐴
𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠

𝑖𝑛𝑛𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠

 

𝐼𝑡𝑜𝑡𝑎𝑙 = ∫ (𝛼𝑟𝑒−𝛽𝑟) 2𝜋𝑟 𝑑𝑟
𝑅

0

 

𝐼𝑡𝑜𝑡𝑎𝑙 = 2𝜋𝛼 ∫ 𝑟2𝑒−𝛽𝑟 𝑑𝑟
𝑅

0

 

From the integral table, this one looks good if we set 𝑎 = −𝛽:  

∫𝑥2 𝑒𝑎𝑥 𝑑𝑥 = 𝑒𝑎𝑥 (
𝑥2

𝑎
−

2𝑥

𝑎2
+

2

𝑎3
) 

𝐼𝑡𝑜𝑡𝑎𝑙 = 2𝜋𝛼 [𝑒−𝛽𝑥 (−
𝑥2

𝛽
−

2𝑥

𝛽2
−

2

𝛽3
)]

0

𝑅

 

At first glance it appears total current might be negative…yikes! 

Have patience and be sure to use both limits… 

𝐼𝑡𝑜𝑡𝑎𝑙 = 2𝜋𝛼 {𝑒−𝛽𝑅 (−
𝑅2

𝛽
−

2𝑅

𝛽2
−

2

𝛽3
) − 𝑒−0 (−

02

𝛽
−

0

𝛽2
−

2

𝛽3
)} 

𝐼𝑡𝑜𝑡𝑎𝑙 = 2𝜋𝛼 {
2

𝛽3
− 𝑒−𝛽𝑅 (

𝑅2

𝛽
+

2𝑅

𝛽2
+

2

𝛽3
)} 

We see the size of total current can be positive (as it should be) if 

2

𝛽3
> 𝑒−𝛽𝑅 (

𝑅2

𝛽
+

2𝑅

𝛽2
+

2

𝛽3
) 

c) If the field at P points to the left, current in the wire must run INTO the page.  Verify with the right hand rule. 

  



d) Outside the wire (𝑟 > 𝑅) we know 

𝐵(2𝜋𝑟) = 𝜇𝑜𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑  

𝐵(2𝜋𝑟) = 𝜇𝑜𝐼𝑡𝑜𝑡𝑎𝑙 

𝐵𝑟>𝑅 =
𝜇0

2𝜋𝑟
∙ 2𝜋𝛼 {

2

𝛽3
− 𝑒−𝛽𝑅 (

𝑅2

𝛽
+

2𝑅

𝛽2
+

2

𝛽3
)} 

𝐵𝑟>𝑅 =
𝜇0𝛼

𝑟
{

2

𝛽3
− 𝑒−𝛽𝑅 (

𝑅2

𝛽
+

2𝑅

𝛽2
+

2

𝛽3
)} 

Inside the wire (𝑟 < 𝑅) we know 

𝐵(2𝜋𝑟) = 𝜇𝑜𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑  

𝐵(2𝜋𝑟) = 𝜇𝑜2𝜋𝛼 ∫ 𝑟2𝑒−𝛽𝑟 𝑑𝑟
𝑟

0

 

Notice the upper limit has changed. 

From here I think you can do the rest of this part on your own. 

e) I’ll get to this plot when I have time.  This one is nasty enough it is worth using a computer. 

f) The question asks for the radius at which current density begins to decrease. 

Take the derivative and set it equal to zero! 

𝑑

𝑑𝑟
𝛼𝑟𝑒−𝛽𝑟 = 0 

Constants out front won’t affect the result. 

𝑑

𝑑𝑟
𝑟𝑒−𝛽𝑟 = 0 

𝑒−𝛽𝑟 − 𝛽𝑟𝑒−𝛽𝑟 = 0 

𝑒−𝛽𝑟(1 − 𝛽𝑟) = 0 

One finds 𝑟 =
1

𝛽
 is the special radius. 

It would be interesting to test if total current can be positive when 𝑟𝑠𝑝𝑒𝑐𝑖𝑎𝑙 =
1

𝛽
< 𝑅 by plugging in 𝑅 =

1

𝛽
 into 𝐼𝑡𝑜𝑡𝑎𝑙 . 

  



29.27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plot of field VECTOR is on the next page… 

  

𝒓 < 𝒂 �⃑⃑� 𝒓<𝒂 = 𝟎 

𝒂 < 𝒓 <  𝟐𝒂 

𝐵𝑎<𝑟<2𝑎2𝜋𝑟 = 𝜇0𝐼 (
𝐴𝐴𝑚𝑝

𝐴𝑇𝑜𝑡

) 

𝐵𝑎<𝑟<2𝑎 =
𝜇0𝐼

2𝜋𝑟
(
𝑟2 − 𝑎2

3𝑎2
) 

 

Current is running into the page (for the inner shell) 

�⃑⃑� 𝒂<𝒓<𝟐𝒂 =
𝝁𝟎𝑰

𝟐𝝅𝒓
(
𝒓𝟐 − 𝒂𝟐

𝟑𝒂𝟐
) (−�̂�) 

𝟐𝒂 < 𝒓 < 𝟑𝒂 

𝐵2𝜋𝑟 = 𝜇0𝐼 

�⃑⃑� 𝟐𝒂<𝒓<𝟑𝒂 =
𝝁𝟎𝑰

𝟐𝝅𝒓
(−�̂�) 

𝟑𝒂 < 𝒓 < 𝟒𝒂 

�⃑� 3𝑎<𝑟<4𝑎 = �⃑� 𝑖𝑛𝑛𝑒𝑟 𝑠ℎ𝑒𝑙𝑙 + �⃑� 𝑜𝑢𝑡𝑒𝑟 𝑠ℎ𝑒𝑙𝑙 

 

Since we are outside the inner shell,  

�⃑� 𝑖𝑛𝑛𝑒𝑟 𝑠ℎ𝑒𝑙𝑙 =
𝜇0𝐼

2𝜋𝑟
(−�̂�) 

 

Since we are inside the outer shell 

𝐵𝑜𝑢𝑡𝑒𝑟 𝑠ℎ𝑒𝑙𝑙2𝜋𝑟 = 𝜇0𝐼 (
𝐴𝐴𝑚𝑝

𝐴𝑇𝑜𝑡

) 

𝐵𝑜𝑢𝑡𝑒𝑟 𝑠ℎ𝑒𝑙𝑙 =
𝜇0𝐼

2𝜋𝑟
(
𝑟2 − 9𝑎2

7𝑎2
) 

 

Current is running out of the page (for the outer shell) 

𝐵𝑜𝑢𝑡𝑒𝑟 𝑠ℎ𝑒𝑙𝑙 =
𝜇0𝐼

2𝜋𝑟
(
𝑟2 − 9𝑎2

7𝑎2
) (+�̂�) 

 

Adding together gives 

�⃑� 3𝑎<𝑟<4𝑎 = �⃑� 𝑖𝑛𝑛𝑒𝑟 𝑠ℎ𝑒𝑙𝑙 + �⃑� 𝑜𝑢𝑡𝑒𝑟 𝑠ℎ𝑒𝑙𝑙 

�⃑� 3𝑎<𝑟<4𝑎 =
𝜇0𝐼

2𝜋𝑟
(−�̂�) +

𝜇0𝐼

2𝜋𝑟
(
𝑟2 − 9𝑎2

7𝑎2
) (+�̂�) 

�⃑⃑� 𝟑𝒂<𝒓<𝟒𝒂 =
𝝁𝟎𝑰

𝟐𝝅𝒓
(
𝒓𝟐 − 𝟗𝒂𝟐

𝟕𝒂𝟐
− 𝟏) (+�̂�) 

𝒓 > 𝟒𝒂 

Outside of both shells 

𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝐼1 + 𝐼2 = 0 

Remember: one adds currents like vectors…even though current is not a 

vector.  Physics is fun! 

�⃑⃑� 𝒓>𝟒𝒂 = 𝟎 



 

To plot field MAGNTIUDE, take the absolute value of every point on the curve. 

One sees the field magnitude plot would look like this one flipped upside down. 

 

Going further: what would be different if the outer wire had twice the current of the inner wire? 

Solutions on the next page… 

Try to do it without looking… 
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Going further: what would be different if the outer wire had twice the current of the inner wire? 
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If we assumed the outer shell had twice the current… 

𝒓 < 𝒂 
Outer shell has no effect on this region, result unchanged. 

�⃑⃑� 𝒓<𝒂 = 𝟎 

𝒂 < 𝒓 <  𝟐𝒂 

Outer shell has no effect on this region, result unchanged. 

�⃑⃑� 𝒂<𝒓<𝟐𝒂 =
𝝁𝟎𝑰

𝟐𝝅𝒓
(
𝒓𝟐 − 𝒂𝟐

𝟑𝒂𝟐
) (−�̂�) 

𝟐𝒂 < 𝒓 < 𝟑𝒂 

Outer shell has no effect on this region, result unchanged. 

�⃑⃑� 𝟐𝒂<𝒓<𝟑𝒂 =
𝝁𝟎𝑰

𝟐𝝅𝒓
(−�̂�) 

𝟑𝒂 < 𝒓 < 𝟒𝒂 

�⃑� 3𝑎<𝑟<4𝑎 = �⃑� 𝑖𝑛𝑛𝑒𝑟 𝑠ℎ𝑒𝑙𝑙 + �⃑� 𝑜𝑢𝑡𝑒𝑟 𝑠ℎ𝑒𝑙𝑙 

�⃑� 3𝑎<𝑟<4𝑎 =
𝜇0𝐼

2𝜋𝑟
(−𝜃) + 𝟐

𝜇0𝐼

2𝜋𝑟
(
𝑟2 − 9𝑎2

7𝑎2
) (+�̂�) 

�⃑⃑� 𝟑𝒂<𝒓<𝟒𝒂 =
𝝁𝟎𝑰

𝟐𝝅𝒓
(𝟐

𝒓𝟐 − 𝟗𝒂𝟐

𝟕𝒂𝟐
− 𝟏) (+�̂�) 

𝒓 > 𝟒𝒂 

Outside of both shells 

𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝐼1 + 𝐼2 

𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝐼 (𝑖𝑛𝑡𝑜 𝑝𝑎𝑔𝑒) + 2𝐼(𝑜𝑢𝑡 𝑜𝑓 𝑝𝑎𝑔𝑒) 

𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝐼(𝑜𝑢𝑡 𝑜𝑓 𝑝𝑎𝑔𝑒) 

�⃑⃑� 𝒓>𝟒𝒂 =
𝝁𝟎𝑰

𝟐𝝅𝒓
(+�̂�) 


