
Chapter 26 Solutions 

26.1 When thinking about current from a stream (or beam) of charges, pick a surface & a direction of travel through 

that surface.  I will assume to the right as my direction through my surface.  Negatives moving left are equivalent to 

positives moving right even though current is not, strictly speaking, a vector.  The current is 6
nC

s
= 6 nA going to the 

right. 

 

 
 

 

26.2 Answer: 𝐽 =
𝐼

3𝜋𝑅2
𝑖.̂  Assumes to the right is standard 𝑖̂ direction.   

The red area is the cross-sectional area in this instance. 

𝐴 = 𝜋𝑅𝑜𝑢𝑡𝑒𝑟
2 − 𝜋𝑅𝑖𝑛𝑛𝑒𝑟

2  

𝐴 = 𝜋(2𝑅)2 − 𝜋𝑅2 

𝐴 = 3𝜋𝑅2 

 

 

26.3 The pipe is shown at right. 

While the shading is not perfect, I am trying to show the 

current density decreasing as radius increases according to 

𝐽 =
𝛼

𝑟2
𝑖̂ 

The black dots in the end view indicate current flowing out 

of the page (fewer black dots at larger radius). 

Notice the side view indicates to the right is 𝑖̂. 

As a result, the end view indicate out of the page is 𝑖̂. 

𝐼 = ∫ 𝐽 ∙ 𝑑𝐴
2𝑅

𝑅

 

𝐼 = ∫ (
𝛼

𝑟2
𝑖̂) ∙ (2𝜋𝑟 𝑑𝑟 𝑖̂)

2𝑅

𝑅

 

𝐼 = ∫
2𝜋𝛼

𝑟
𝑑𝑟

2𝑅

𝑅

 

𝐼 = 2𝜋𝛼 ln 𝑟 |

𝑅

2𝑅

 

𝐼 = 2𝜋𝛼 ln 2 

Think: check the units of every answer just in case. 

From our original current density equation: 

[𝛼] = [𝐽] ∙ [𝑟]2 =
A

m2
∙ m2 = A. 

Units check! 

 

  

+ 

+ + 

+ 

_ 

_ 

Side View End View 

𝑑𝑟 

𝑖 ̂ 𝑖 ̂



26.4 When current flows radially towards the outer wall, 

the cross-sectional area current flows through is the 

sidewall (not the end cap) of a cylinder! 

 

The sidewall area of an arbitrary cylinder (purple 

cylindrical shell in figure) of radius 𝑟 and height ℎ is 

𝐴𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑙 = 2𝜋𝑟ℎ. 

 

For points farther from the center of the pipe (bigger values 

of r) we see the area of the sidewall increases. 

 

Current density and area are inversely related.  

  

We expect current density is greatest near the center of the pipe.   

 

 

 

 

  



26.5  

a) We are given 𝐿 = 1.00 m, 𝑟 = 0.500 mm,& 𝜌𝐴𝑢 = 24.4 nΩ ∙ m (figure not to scale). 

𝑅 =
𝜌𝐿

𝐴
 

𝑅 =
𝜌𝐿

𝜋𝑟2
 

𝑅 = 3.107 × 10−2 Ω 

𝑹 = 𝟑𝟏. 𝟎𝟕 𝐦𝛀 

 

b) To decrease 𝑅 by 5% one would want to make 𝐿 5% shorter. 

 

c) Changing the radius is sneakier (because R depends on radius squared!). 

If you are sure how to handle it, you can always take a ratio. 

We want 𝑅′ = 0.95𝑅. 

𝑅′ = 0.95𝑅 

𝜌𝐿

𝜋𝑟′2
= 0.95

𝜌𝐿

𝜋𝑟2
 

1

𝑟′2
= 0.95

1

𝑟2
 

𝑟′2 =
𝑟2

0.95
 

𝑟′ = 𝑟√
1

0.95
 

𝒓′ = 𝟏. 𝟎𝟐𝟔𝟎𝒓 

Increase the radius by about 2.60% to decrease resistance by 5%! 

 

d) The problem states we have gold (a metal) operating at 20.0℃. 

For metals, increasing temperature typically increases resistance (opposite is typically true for semi-conductors). 

There are two standard resistance versus temperature formulas: 

𝑅(𝑇) = 𝑅0(1 + 𝛼Δ𝑇)       𝐨𝐫     Δ𝑅 = 𝑅0𝛼Δ𝑇 

It is important to know 𝑅0 = 𝑅@20℃ is resistance at the standard reference temperature of 20.0℃. 

Δ𝑅 = 𝑅0𝛼Δ𝑇 

−5% of 𝑅0 = 𝑅0𝛼Δ𝑇 

−0.05𝑅0 = 𝑅0𝛼Δ𝑇 

−0.05 = 𝛼Δ𝑇 

Δ𝑇 = −
0.05

𝛼
 

𝑇 − 20.0℃ = −
0.05

𝛼
 

From a web search, I found the temperature coefficient of resistivity for gold as 𝛼𝐴𝑢 = 0.0034
1

℃
. 

 

𝑻 = 𝟐𝟎. 𝟎℃ −
𝟎. 𝟎𝟓

𝟎. 𝟎𝟎𝟑𝟒
𝟏
℃

= 𝟓. 𝟐𝟗℃ 

𝐿 

𝑑 = 2𝑟 



26.6  

a) The figures show the dimensions as they relate to the 

words in the problem statement.   

 

While not specifically stated, one typically assume current 

flows along the long axis of the wire (unless otherwise 

noted). 

 

From Ohm’s law we know 

Δ𝑉 = 𝐼𝑅 

𝑅 =
Δ𝑉

𝐼
 

𝑹 =
𝓔

𝑰
 

Our resistivity equation tells us 

𝑅 =
𝜌𝐿

𝐴
 

𝑅 =
𝜌𝐿

𝜋𝑟2
 

𝑅 =
𝜌𝐿

𝜋 (
𝑑
2
)
2 

𝑹 =
𝟒𝝆𝑳

𝝅𝒅𝟐
 

Combining these equations gives  

𝓔

𝑰
=
4𝜌𝐿

𝜋𝑑2
 

𝝆 =
𝝅𝒅𝟐𝓔

𝟒𝑳𝑰
 

 

b) You could probably think deeply and come up with the answer… why not use a ratio or eqt’n to reduce effort? 

𝐼𝑏𝑖𝑔 = 𝐼𝑠𝑚𝑎𝑙𝑙  

Δ𝑉𝑏𝑖𝑔

𝑅𝑏𝑖𝑔
=
Δ𝑉𝑠𝑚𝑎𝑙𝑙
𝑅𝑠𝑚𝑎𝑙𝑙

 

Δ𝑉𝑠𝑚𝑎𝑙𝑙 = Δ𝑉𝑏𝑖𝑔
𝑅𝑠𝑚𝑎𝑙𝑙
𝑅𝑏𝑖𝑔

 

Δ𝑉𝑠𝑚𝑎𝑙𝑙 = ℰ

      
4𝜌𝑠𝑚𝑎𝑙𝑙𝐿𝑠𝑚𝑎𝑙𝑙
𝜋𝑑𝑠𝑚𝑎𝑙𝑙

2       

4𝜌𝑏𝑖𝑔𝐿𝑏𝑖𝑔
𝜋𝑑𝑏𝑖𝑔

2

 

Δ𝑉𝑠𝑚𝑎𝑙𝑙 = ℰ
      
4𝜌(𝐿/2)
𝜋(𝑑/3)2

      

4𝜌𝐿
𝜋𝑑2

 

𝚫𝑽𝒔𝒎𝒂𝒍𝒍 =
𝟗

𝟐
𝓔 

 

Solution continues on the next page… 

𝐿 

𝐿

2
 

𝑑 

𝑑

3
 

𝓔 

𝑰 



c) In this scenario, we are asked to determine the power ratio shown below: 

𝑝𝑜𝑤𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝒫𝑠𝑚𝑎𝑙𝑙
𝒫𝑏𝑖𝑔

 

𝑝𝑜𝑤𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝑖𝑠𝑚𝑎𝑙𝑙Δ𝑉𝑠𝑚𝑎𝑙𝑙
𝑖𝑏𝑖𝑔Δ𝑉𝑏𝑖𝑔

 

Think: we were told in the previous part the two wires have identical current…the currents cancel! 

𝑝𝑜𝑤𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =
Δ𝑉𝑠𝑚𝑎𝑙𝑙
Δ𝑉𝑏𝑖𝑔

 

From the previous part we know Δ𝑉𝑏𝑖𝑔 = ℰ  &  Δ𝑉𝑠𝑚𝑎𝑙𝑙 =
9

2
ℰ.   

𝒑𝒐𝒘𝒆𝒓 𝒓𝒂𝒕𝒊𝒐 =
𝟗

𝟐
 

 

Another method would be to write the power ratio as 

𝑝𝑜𝑤𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝒫𝑠𝑚𝑎𝑙𝑙
𝒫𝑏𝑖𝑔

 

𝑝𝑜𝑤𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝑖𝑠𝑚𝑎𝑙𝑙
2 𝑅𝑠𝑚𝑎𝑙𝑙

𝑖𝑏𝑖𝑔
2 𝑅𝑏𝑖𝑔

 

Think: we were told in the previous part the two wires have identical current…the currents cancel! 

𝑝𝑜𝑤𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑠𝑚𝑎𝑙𝑙
𝑅𝑏𝑖𝑔

 

From the previous part we know 
𝑅𝑠𝑚𝑎𝑙𝑙

𝑅𝑏𝑖𝑔
=
9

2
.  We still find 

𝒑𝒐𝒘𝒆𝒓 𝒓𝒂𝒕𝒊𝒐 =
𝟗

𝟐
 

 

 

 

 

 

  



26.7  

a) A mA ∙ hr is a unit of charge. 

2750 × 10−3 A ∙ hr = 2750 × 10−3
C ∙ hr

s
= 2750 × 10−3

C ∙ (3600 s)

s
= 9900 C 

Strictly speaking, we say this battery is rated to move 9900 C of charge at potential 1.5 V. 

WATCH OUT! It is probably better to think of batteries in mA ∙ hrs than as storing charge. 

What do you want batteries to do? 

Produce current to run some device (i.e. spin a motor) for some period of time. 

Per some wiki, take the amperage and divide by 20 (i.e. 
2750

20
mA = 137.5 mA). 

We would then expect this battery could sustain a current of about 137.5 mA for about 20 hours. 

I doubt the battery could produce 2750 mA for an entire hour, but it would probably come fairly close 

(within an hour) of producing the 137.5 mA for 20 hours. 

 

b) The device consumes energy at a rate of 𝒫 = 375 mW.  The voltage across the terminals is 1.5 V.  Time is 

90.0 min = 5400 s.  We are told internal resistance is negligible.   

The current is given by 𝑖 =
𝒫

Δ𝑉
.  BUT WAIT! The definition of current is 𝑖 =

Δ𝑄

Δ𝑡
. 

Oh my gosh! Put these together and solve for Δ𝑄. 

Δ𝑄 = Δ𝑡 ∙ 𝑖 =
𝒫 Δ𝑡

Δ𝑉
= 1350 C 

But this is not what the question asked!!! It asked how much charge is left. 

𝑄𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = 𝑄𝑖𝑛𝑖𝑡 − Δ𝑄 = 8550 C 

Again, probably better to think about run times & currents than charge available… 

 

c) Use 

𝒫 = 𝑖Δ𝑉 

𝒫 =
Δ𝑄

Δ𝑡
Δ𝑉 

Δ𝑡 =
Δ𝑄

𝒫
Δ𝑉 

Δ𝑡 =
9900 C

375 × 10−3 W
1.5 V 

Δ𝑡 = 39600 s = 11 hrs 

In practice the actual run time is probably 80-90% of this number. 

One website I read claimed lithium ion batteries tend to be closer to the 90% of this computation. 

Maybe this helps you design what size battery to use in some real device someday?  Hope so. 

 

 

  



26.8 

a) A kW ∙ hr is a unit of energy. 

1 kW ∙ hr = 103
J

s
∙ hr = 103

J

s
∙ (3600 s) = 3.6 × 106 J = 3.6 MJ 

b) While charging for 90.0 min = 1.50 hr the charger consumes 4.0 W × 1.50 hr = 6.0 W∙hr. 

While plugged in, not charging for 22.5 hrs the charger consumes 0.40 W × 22.5 hr = 9.0 W∙hr. 

Total daily energy consumption is 15 W∙hr. 

Monthly energy consumption is 450 W∙hr≈0.45 kW∙hr. 

Total monthly cost is about $0.054 (or $0.65 annually). 

Notice, however, 
9

15
= 60% of the cost comes from leaving the charger plugged in all time. 

We see one little charger, all by itself, is really not a big deal. 

But now, think about perhaps 5 such vampire draws per household (TV, cable box, other chargers, etc). 

Be conservative and assume each vampire draw is 5 times smaller than my estimate or 0.4 W. 

An overly conservative total monthly cost per household is then given by original estimate. 

Times perhaps 100 million households (about 80% of the US households). 

Times 12 months. 

Divide by 4 (power company charges about 4 times as much to us as it actually costs to create the energy). 

Net cost of entire US vampire load is about $1 million dollars…about 1/50th the annual budget for all of 

Allan Hancock College in 2016… 

Perhaps you have seen those hotels where you have to slide the key in and then the whole room’s power 

comes on.  This is a handy way to minimize vampire draws per hotel room.  I want one for my house…as 

long as the fridge isn’t on that circuit. 

 

  



26.9 The units of resistivity are Ω ∙ m…sorry I forgot them in the problem statement. 

a) I will compare the resistivity at 20.0℃ (𝜌0) and 3000℃ (𝜌3000). 

𝜌3000 = 𝜌0(1 + 𝛼Δ𝑇) 

𝜌3000
𝜌0

= 1 + 𝛼Δ𝑇 

𝛼 =
  
𝜌3000
𝜌0

− 1  

Δ𝑇
 

𝜶 ≈ 𝟓. 𝟗𝟓𝟔 × 𝟏𝟎−𝟑
𝟏

℃
 

b) The bulb is operating at 𝒫 = 60 W at Δ𝑉 = 120 V (being lazy with sig figs here). 

Note: if you are worried about AC current (wall socket) versus DC current (batteries), relax.   

It turns out this problem works as stated…more in a later chapter on this. 

Think: we want to learn about resistance. 

Find a version of the power equation involving only power, voltage and resistance! 

𝒫 = 𝑖Δ𝑉 

𝒫 =
Δ𝑉2

𝑅
 

𝑅 =
Δ𝑉2

𝒫
 

𝑹 = 𝟐𝟒𝟎 𝛀 

c) The resistivity can now be computed from  

𝑅 =
𝜌𝐿

𝐴
 

𝜌 =
𝐴𝑅

𝐿
 

𝜌 =
𝜋𝑑2𝑅

4𝐿
 

𝝆 = 𝟔𝟓𝟖. 𝟏 𝐧𝛀 ∙ 𝐦 

d) Now use 

𝜌𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡𝑒𝑚𝑝 = 𝜌0(1 + 𝛼Δ𝑇) 

Δ𝑇 =
  
𝜌𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

𝜌0
− 1  

𝛼
 

𝑇𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 − 20.0℃ =
  
𝜌𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

𝜌0
− 1  

𝛼
 

I used unrounded answers from previous parts to avoid intermediate rounding errors! 

𝑇𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 = 20.0℃ +
  
6.581 × 10−7 Ω ∙ m
5.6 × 10−8 Ω ∙ m

− 1  

5.956 × 10−3
1
℃

 

𝑻𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒏𝒈 = 𝟏𝟖𝟐𝟓 ℃ 

  



26.10  NOTE: many of you probably just picked a random point on the curve and plugged it into 𝑅 =
𝜌𝐿

𝐴
.   

If you did that, it is impossible to know which point will give the best data.  For this type of problem, one with real 

data, it is often preferable to use the slope to average the data.  A solution method using the slope is shown below. 

WARNING: the slope method will only work if the plot is linear! 

 

We know 𝑅 =
𝜌𝐿

𝐴
.  We notice the plot has vertical axis 𝑅 and horizontal axis 𝐿.  I re-write in this form 

𝑅 =
𝜌

𝐴
∙ 𝐿 

to help me see how it relates to the standard form of the equation for a line 

𝑦 = 𝑠𝑙𝑜𝑝𝑒 ∙ 𝑥 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

The vertical coordinate of our plot (𝑅) corresponds to 𝑦 in the standard form. 

The horizontal coordinate of our plot (𝐿) corresponds to 𝑥 in the standard form. 

This means the term 
𝜌

𝐴
 in our equation must correspond to the slope of the graph! 

𝑠𝑙𝑜𝑝𝑒 =
𝜌

𝐴
 

𝑠𝑙𝑜𝑝𝑒 =
𝜌

𝜋𝑟2
 

𝑠𝑙𝑜𝑝𝑒 =
𝜌

𝜋 (
𝐷
2
)
2 

𝑠𝑙𝑜𝑝𝑒 =
4𝜌

𝜋𝐷2
 

We were asked to determine the wire diameter…solve this crap for 𝐷. 

𝐷 = √
4𝜌

𝜋 ∙ 𝑠𝑙𝑜𝑝𝑒
 

I estimated the slope of this graph using rise over run to be  

𝑠𝑙𝑜𝑝𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
=

35 μΩ

800 mm
= 4.375 × 10−5

Ω

m
 

When doing ugly computations, it seems easier to do everything in scientific notation.  After you find a final result, 

switch it back to engineering notation with appropriate prefix to make it more palatable for your intended audience. 

 

In this case, I change 𝜌 = 12.5 nΩ ∙ m to 12.5 × 10−9 Ω ∙ m.  While not strictly in scientific notation, this is a lot 

less likely to cause a mistake in computation.  It also makes it easier to check units.  Plugging in one finds 

𝐷 = √
4(12.5 × 10−9 Ω ∙ m)

𝜋 ∙ 4.375 × 10−5
Ω
m

≈ 19.07 mm ≈ about
3

4
 of an inch 

Do these numbers seem reasonable? 

The resistivity value is close to that of copper or silver…excellent conductors. 

The diameter is almost an inch. 

The length is about a meter. 

This should give very small resistances…probably on the order of 10’s of 𝜇Ω’s…seems plausible. 

Side notes:  

• Please keep in mind, real-life data sets are often a little messy; I tried to simulate that in this data set. 

• Using a trendline in Excel I found a slope of 4.13 × 10−5
Ω

m
…within 6% of my estimate.   

• According to our theoretical equation 𝑅 =
𝜌

𝐴
∙ 𝐿 we expect the intercept should be zero. 

• By forcing the intercept to zero, as one expects in this scenario, the trendline slope was 4.38 × 10−5
Ω

m
. 



26.11 It is important to use unrounded answers in subsequent computations to avoid intermediate rounding errors! 

Video showing wire getting hot as voltage is ramped up. 

https://www.youtube.com/watch?v=h0Uhx6KY0_0&list=PLBQTyyPKj9WZl89Zhwai-piDCw1DwoPHa&index=10 

NOTE: many of you probably just picked a random point on the curve and plugged it into Δ𝑉 = 𝐼𝑅.   

For this problem that method works just fine!   

For ohmic devices only (devices with a linear IV plot) in a lab situation it is often preferable to use 𝑅𝑎𝑣𝑔 =
1

𝑠𝑙𝑜𝑝𝑒
  as 

it averages the data.  I will use this method for part a. 

 

a) We are told Δ𝑉 = 𝐼𝑅.  Rearrange this to isolate 𝐼 (the vertical coordinate of our plot).   

𝐼 =
1

𝑅
∙ Δ𝑉 

Notice how this relates to the standard form of 

𝑦 = 𝑠𝑙𝑜𝑝𝑒 ∙ 𝑥 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

We expect 

𝑠𝑙𝑜𝑝𝑒 =
1

𝑅𝑎𝑣𝑔
 

I estimated the slope of this graph for Δ𝑉 < 4.0 V using rise over run. 

𝑠𝑙𝑜𝑝𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
=
75 mA

3.5 V
 

𝑠𝑙𝑜𝑝𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 2. 14 × 10
−2
A

V
 

𝑠𝑙𝑜𝑝𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 2. 14 × 10
−2 Ω−1 

By looking at our original equation, Δ𝑉 = 𝐼𝑅, notice 1 Ω = 1
V

A
. 

From here we can see 

𝑅𝑎𝑣𝑔 =
1

𝑠𝑙𝑜𝑝𝑒
= 46. 7 Ω ≈ 47 Ω 

 

b) For a cylindrical wire, 𝑅 =
𝜌𝐿

𝐴
=

4𝜌𝐿

𝜋𝐷2
.  Solving for 𝜌 gives 

𝜌 =
𝜋𝑅𝐷2

4𝐿
 

𝜌 =
𝜋(46. 7 Ω)(325 × 10−6 m)2

4(385 × 10−2 m)
 

𝜌 = 1. 006 × 10−6 Ω ∙ m ≈ 1006 nΩ ∙ m 

What’s all that nichrome doing up in here… 

Side note on nichrome: two common varieties of nichrome are 80/20 and 70/30.   

The resistivity varies wildly depending on which Nichrome variety you get… 

 

c) Notice when Δ𝑉 = 7.5 V  we are now beyond the linear portion of the graph (linear from Δ𝑉 = 0 → 4.0 V).  

The slope trick no longer works! 

When Δ𝑉 = 7.5 V the current is 𝐼 = 130 mA.   

The resistance is 𝑅 =
Δ𝑉

𝐼
= 57. 7 Ω ≈ 58 Ω. 

Problem continues on next page… 

  

https://www.youtube.com/watch?v=h0Uhx6KY0_0&list=PLBQTyyPKj9WZl89Zhwai-piDCw1DwoPHa&index=10
https://www.youtube.com/watch?v=h0Uhx6KY0_0&list=PLBQTyyPKj9WZl89Zhwai-piDCw1DwoPHa&index=10


d) Resistance versus temperature is given by 

𝑅(𝑇) = 𝑅@20℃(1 + 𝛼Δ𝑇) 

WATCH OUT!  Here we have defined Δ𝑇 = 𝑇 − 20.0℃ and 𝑇 is in ℃. 

Solving algebraically is the way to go even though we have numbers (some test questions have no numbers). 

𝑅(𝑇)

𝑅@20℃
= 1 + 𝛼Δ𝑇 

𝛼Δ𝑇 =
𝑅(𝑇)

𝑅@20℃
− 1 

𝛼 =
     
𝑅(𝑇)
𝑅@20℃

− 1     

Δ𝑇
 

𝛼 =

     
57. 7 Ω
46. 7 Ω

− 1     

123℃ − 20.0℃
 

𝛼 =
     1. 236 − 1     

103℃
 

𝛼 =
0. 236

103℃
 

𝛼 = 0.00229
1

℃
≈ 2 × 10−3

1

℃
= 2 × 10−3 K−1 

Since both the Celsius and Kelvin temperature scales have the same increment size, this last unit substitution is fair 

game.  As you will learn in a thermo class (or have already learned), when doing problems with change in 

temperature, it is ok to switch between K and ℃.  This is not a good idea if 𝑇, not Δ𝑇, is in your equation. 

e) When Δ𝑉 = 6.25 V the current is 𝐼 = 115 mA.  The resistance is 𝑅 =
Δ𝑉

𝐼
= 54. 3 Ω. 

𝑅(𝑇) = 𝑅@20℃(1 + 𝛼Δ𝑇) 

𝑅(𝑇)

𝑅@20℃
= 1 + 𝛼Δ𝑇 

𝛼Δ𝑇 =
𝑅(𝑇)

𝑅@20℃
− 1 

Δ𝑇 =
     
𝑅(𝑇)
𝑅@20℃

− 1     

𝛼
 

Δ𝑇 =

     
54. 3 Ω
46. 7 Ω

− 1     

0.00229
1
℃

 

Notice I used the unrounded result for 𝛼 to improve the precision of my final result…but ultimately it is only good 

to 1 sig fig! 

Δ𝑇 = 71.5 ℃ 

THIS IS NOT THE ANSWER!!!! 

I asked for temperature…not change in temperature.  Use Δ𝑇 = 𝑇 − 20.0℃ 

𝑻 = 𝟗𝟏. 𝟓 ℃ 

f) The slope in that region is about  

𝑠𝑙𝑜𝑝𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
= 1. 27 × 10−2

A

V
= 1. 27 × 10−2 Ω−1 

This gives 

𝑅𝑑𝑖𝑓𝑓 =
1

𝑠𝑙𝑜𝑝𝑒
≈ 79 Ω 

 

 



26.12 Germanium has resistivity 0.46…no × 10 at all!!!  

That is about half a million times larger than Nichrome’s resistivity. 

We expect resistances to be about half a million times smaller. 

Furthermore, the temperature coefficient for germanium is −48 × 10−3
1

℃
. 

That is about 120 times larger than Nichrome’s temperature coefficient of resistivity AND NEGATIVE. 

This means we expect resistance to change more rapidly AND decrease (instead of increase). 

If resistance decreases we expect the average slope to increase. 

We expect the increase in slope to be 120 times more dramatic the change observed for nichrome. 

In the plot below, notice I’m using NANOamps now as compared to milliamps for nichrome. 

DISCLAIMER: I have no clue if our fictional germanium wire should experience comparable temperature changes 

to the nichrome wire…perhaps it radiates heat much less effectively and would experience much different 

temperature changes. 
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26.13 Let subscript 1 represent carbon & subscript 2 represent Nichrome. 

We are told 

𝑅1 + 𝑅2 = 10.0 Ω 

We are told the wires resistance does NOT change with temperature. 

If you are clever, you might realize this implies the increase of the Nichrome segment (𝛼2 > 0) must be exactly 

offset by the the decrease in the carbon segment (𝛼1 < 0). 

In equation form 

Δ𝑅2 = −Δ𝑅1 

𝑅0 𝑓𝑜𝑟 2𝛼2Δ𝑇2 = −𝑅0 𝑓𝑜𝑟 1𝛼1Δ𝑇1 

In this case, the wires are in thermal contact.  We assume they experience identical temperature changes. 

𝑅0 𝑓𝑜𝑟 2𝛼2 = −𝑅0 𝑓𝑜𝑟 1𝛼1 

𝑅0 𝑓𝑜𝑟 2 = −
𝛼1
𝛼2
𝑅0 𝑓𝑜𝑟 1 

 

We now have two equations and two unknowns! 

𝑅1 + 𝑅2 = 10.0 Ω 

𝑅0 𝑓𝑜𝑟 1 −
𝛼1
𝛼2
𝑅0 𝑓𝑜𝑟 1 = 10.0 Ω 

𝑅0 𝑓𝑜𝑟 1 (1 −
𝛼1
𝛼2
) = 10.0 Ω 

𝑅0 𝑓𝑜𝑟 1 =
10.0 Ω

  1 −
𝛼1
𝛼2
  
 

𝜌0 𝑓𝑜𝑟 1𝐿1

𝐴1
=
10.0 Ω

  1 −
𝛼1
𝛼2
  
 

𝐿1 =
𝐴

𝜌0 𝑓𝑜𝑟 1
∙
10.0 Ω

  1 −
𝛼1
𝛼2
  
 

𝑳𝟏 = 𝟏. 𝟓𝟗𝟔 m 

In a similar fashion, one also finds 𝑳𝟐 = 𝟔𝟑. 𝟓 m. 

 

BONUS: These distances are seriously unwieldy. 

If we want them to be 100 times shorter, the area must be reduced by 100 times as well. 

This implies the radius need only be reduced by a factor of 10. 

We’d need a wire that is 0.200 mm instead of 2.00 mm. 

This reduces lengths to about 1.6 cm and 63.5 cm… 

This is much more manageable…but the wire is more easily snapped. 

 

 

  



27.14  

a) We are told total resistance is 𝑅 and given 

1

𝑅𝑡𝑜𝑡𝑎𝑙
=
1

𝑅1
+
1

𝑅2
 

We are also told the carbon core and nichrome shell have equal resistance (𝑅1 = 𝑅2). 

Plugging in we find 

1

𝑅
=
1

𝑅1
+
1

𝑅1
 

1

𝑅
=
2

𝑅1
 

𝑅1 = 2𝑅 

Same for core and shell. 

b) To determine diameter of the core 

𝑅𝑐𝑜𝑟𝑒 =
𝜌𝑐𝑜𝑟𝑒𝐿

𝐴𝑐𝑜𝑟𝑒
=
4𝜌𝑐𝑜𝑟𝑒𝐿

𝜋𝐷2
 

Solving for diameter gives 

𝑫 = √
𝟒𝝆𝒄𝒐𝒓𝒆𝑳

𝝅𝑹𝒄𝒐𝒓𝒆
= √

𝟐𝝆𝟏𝑳

𝝅𝑹
 

c) Now use 

𝑅𝑡ℎ𝑖𝑛 𝑠ℎ𝑒𝑙𝑙 =
𝜌𝑠ℎ𝑒𝑙𝑙𝐿

𝐴𝑠ℎ𝑒𝑙𝑙
 

𝑅𝑡ℎ𝑖𝑛 𝑠ℎ𝑒𝑙𝑙 =
𝜌𝑠ℎ𝑒𝑙𝑙𝐿

(𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒) × (𝑠ℎ𝑒𝑙𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
 

𝑅𝑡ℎ𝑖𝑛 𝑠ℎ𝑒𝑙𝑙 =
𝜌𝑠ℎ𝑒𝑙𝑙𝐿

(𝜋𝐷) × (𝑡)
 

𝑡 =
𝜌𝑠ℎ𝑒𝑙𝑙𝐿

𝜋𝐷𝑅𝑡ℎ𝑖𝑛 𝑠ℎ𝑒𝑙𝑙
 

𝑡 =
𝜌2𝐿

𝜋 (√
2𝜌1𝐿
𝜋𝑅

) (2𝑅)

 

Bring all crap in denominator into radical. 

𝑡 =
𝜌2𝐿

√8𝑅𝜋𝜌1𝐿
 

Might as well bring it all in I guess… 

𝑡 = √
𝜌2
2𝐿

8𝑅𝜋𝜌1
 

This is getting outrageous…better check the units 

[𝑡] = √
[𝜌2]

2[𝐿]

[𝑅][𝜌1]
= √

(Ω ∙ m)2(m)

(Ω)(Ω ∙ m)
= √

Ω2 ∙ m3

Ω2 ∙ m
= m 

Looks good as far as units go. 

d) As it heats up, the carbon core resistance decreases while nichrome resistance increases.  In parallel, we 

will learn the net resistance is always less than either resistor by itself.  This means the resistance of this 

unusual resistor actually goes down with temperature.  If you didn’t see this, rest assured you would had 

you done the homework from the next chapter. 



26.15 Video shows a Nichrome wire getting hot and burning… 

https://www.youtube.com/watch?v=h0Uhx6KY0_0&list=PLBQTyyPKj9WZl89Zhwai-

piDCw1DwoPHa&index=10 

The filament is made of metal (i.e. tungsten). 

We know as current flows in the wire, the metal temperature should increase. 

As temperature increases, we expect resistance to increase (and thus current decreases). 

 
Note: one web resource I found indicated temperatures reached 90% of operating temps in about 0.1 seconds for 

some random 10 W and 100 W bulbs.  These time frames seem plausible enough to me. 

 

26.16 Video shows a Nichrome wire getting hot and burning… 

https://www.youtube.com/watch?v=h0Uhx6KY0_0&list=PLBQTyyPKj9WZl89Zhwai-

piDCw1DwoPHa&index=10 

 

As voltage is increased, current should increase. 

Temperature should also increase. 

This implies resistance should also increase. 

This implies resistance at high voltage should be slightly larger than resistance at low voltage. 

This implies changing voltage from 0 to 1 V increases current slightly more than increasing voltage from 4 to 5 V. 

 
Notice the two red triangles in the figure have the same base (same Δ𝑉). 

At high voltage, however, the triangle is shorter (less increase in current). 

Note: this figure is almost certainly not to scale. 

In my experience, the curve is almost a straight line. 

Also, the wires I’ve used tend to melt fairly soon after you notice any significant deviation from a straight line. 

 

 

  

𝑡 (s) 

𝑖 (A) 

Δ𝑉

𝑅𝑐𝑜𝑙𝑑
 

Δ𝑉

𝑅𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔
 

Δ𝑉 (V) 

𝑖 (A) 

https://www.youtube.com/watch?v=h0Uhx6KY0_0&list=PLBQTyyPKj9WZl89Zhwai-piDCw1DwoPHa&index=10
https://www.youtube.com/watch?v=h0Uhx6KY0_0&list=PLBQTyyPKj9WZl89Zhwai-piDCw1DwoPHa&index=10
https://www.youtube.com/watch?v=h0Uhx6KY0_0&list=PLBQTyyPKj9WZl89Zhwai-piDCw1DwoPHa&index=10
https://www.youtube.com/watch?v=h0Uhx6KY0_0&list=PLBQTyyPKj9WZl89Zhwai-piDCw1DwoPHa&index=10


26.17  

a) 14.36 mΩ 

b) 626.7 A… 

That’s a LOT of current.   

This can occur if you connect a car battery to a small gauge (large radius) wire with no other resistance. 

c) 19.96 mΩ 

d) 450.8 A 

e) 538.8 A 

f) 4.849 kW 

g) 5.301 × 10−5 kg 

h) 𝑇ℎ𝑖𝑠 𝑝𝑎𝑟𝑡 𝑛𝑜𝑡 𝑜𝑛 𝑎  𝑃𝐻𝑌𝑆 163 𝑡𝑒𝑠𝑡 … 4.771 J 

i) Use 𝒫 =
Δ𝐸

Δ𝑡
→ Δ𝑡 =

Δ𝐸

𝒫
≈ 9.84 × 10−4 s ≈ 1 msec. 

Please note: this is an over-simplified estimate. 

In practice, much of the power delivered to the wire is radiated away. 

This means the time to reach temperature must be LONGER than what we estimate here. 

That said, it gives us a reasonable estimate for the minimum time to reach temperature. 

The colder the surroundings, the more one must increase this time estimate. 

  



26.18  

a) For case one, there is no need to perform calculus. 

Current is uniformly distributed throughout the red-cross-sectional area 

𝐴 = 𝜋𝑅𝑜𝑢𝑡𝑒𝑟
2 − 𝜋𝑅𝑖𝑛𝑛𝑒𝑟

2  

𝐴 = 𝜋𝑏2 − 𝜋𝑎2 

𝐴 = 𝜋(𝑏2 − 𝑎2) 

Resistance is thus 

𝑅 =
𝜌𝐿

𝐴
 

𝑹 =
𝝆𝑳

𝝅(𝒃𝟐 − 𝒂𝟐)
 

b) The figure below hopefully helps… 

Notice the cross-sectional area is now the sidewall of purple cylinder (current flows through the sidewall). 

The area is now 𝐴 = 2𝜋𝑟𝐿. 

The thickness of the cylindrical shell is 𝑑𝑟. 

Because the dimensions of the sidewall area change, we must use 

𝑅 = ∫
𝜌 𝑑𝑠

𝐴

𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠

𝑖𝑛𝑛𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠

 

𝑅 = ∫
𝜌 𝑑𝑟

2𝜋𝑟𝐿

𝑏

𝑎

 

𝑹 =
𝝆 

𝟐𝝅𝑳
𝐥𝐧 (

𝒃

  𝒂  
) 

c) Setting the two resistances equal gives 

𝝆 

𝟐𝝅𝑳
𝐥𝐧
𝒃

𝒂
=

𝜌𝐿

𝜋(𝑏2 − 𝑎2)
 

𝐿2 =
ln
𝑏
𝑎
 

2
(𝑏2 − 𝑎2) 

𝑳 =
√𝐥𝐧

𝒃
𝒂
 

𝟐
√𝒃𝟐 − 𝒂𝟐 

  

Side View 
End View 

𝑑𝑟 



26.19 The figure at right hopefully helps… 

In this manner current can flow from the inner surface of the cylindrical shell 

Notice the cross-sectional area is now the spherical shell indicated by the purple circle. 

The area is now 𝐴 = 4𝜋𝑟2. 

The thickness of the shell is 𝑑𝑟. 

Because the dimensions of the sidewall area change, we must use 

𝑅 = ∫
𝜌 𝑑𝑠

𝐴

𝑜𝑢𝑡𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠

𝑖𝑛𝑛𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠

 

𝑅 = ∫
𝜌 𝑑𝑟

4𝜋𝑟2

𝑏

𝑎

 

𝑅 = −
𝜌 

4𝜋𝑟
|
𝑎

𝑏

 

If I flip the limits I can flip the sign… 

𝑅 =
𝜌 

4𝜋𝑟
|
𝑏

𝑎

 

𝑅 =
𝜌 

4𝜋𝑎
−
𝜌 

4𝜋𝑏
 

𝑹 =
𝝆(𝒃 − 𝒂)

𝟒𝝅𝒂𝒃
 

Checks: units work out. 

Also, we were told 𝑏 > 𝑎 so this is a positive number (as resistances should be). 

Finally: if 𝑏 ≈ 𝑎, we’d be have a very thin shell which should have nearly zero resistance. 

Our formula goes to zero as 𝑏 → 𝑎 as we expect.  Looks good. 

 

Note: in practice one would connect to the inner wall of the spherical shell by drilling a small hole. 

An insulated wire then is passed through the hole to the interior wall. 

The resistive medium between the two surfaces might actually be air (instead of a solid metal shell). 

Such a device reminds me a bit of a device used in measuring radioactivity. 

I suspect it is much simpler to make the cylindrical version…but this spherical version could be made in real life. 

 

 

  

Cross-sectional View 

𝑑𝑟 



26.20  

a) Between the front and back faces, cross-sectional area remains constant. 

Non need for calculus. 

𝑅 =
𝜌𝐿

𝐴
  

Here the cross-sectional area is that of the trapezoidal face. 

𝐴 =
1

2
(𝑎 + 𝑏)𝑑 

The length of the resistor is the distance between the front and back faces…in this case 𝑐. 

𝑹 =
𝟐𝝆𝒄

(𝒂 + 𝒃)𝒅
 

 

b) When the left and right faces are used, the cross-

section through which current flows changes. 

My attempt to draw this is shown at right. 

 

Current is indicated by the red arrows. 

The purple slab is supposed to be a cross-section at 

some arbitrary distance 𝑥 for the left face. 

 

Note: the cross-section has constant width 𝑐 into the 

page while the thickness of the slab is 𝑑𝑥.  

The height of the slab changes linearly. 

The linear function is  

𝑦 = 𝑠𝑙𝑜𝑝𝑒 ∙ 𝑥 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

𝑦 =
𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
∙ 𝑥 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

𝑦 =
𝑏 − 𝑎

𝑑
𝑥 + 𝑎 

Anytime I write a line function, I always try to check it works properly by plugging in the two endpoints. 

If I plug in 𝑥 = 0 I get 𝑦 = 𝑎. 

If I plug in 𝑥 = 𝑑 I get 𝑦 = 𝑏. 

Looks good. 

The integral looks like 

𝑅 = ∫
𝜌 𝑑𝑥

𝑐 (
𝑏 − 𝑎
𝑑

𝑥 + 𝑎)

𝑑

0

 

TIP: at this point I usually do a seemingly odd thing. 

Instead of doing a U sub, I simply rewrite this integral in terms of slab height 𝑦! 

Because 𝑦 =
𝑏−𝑎

𝑑
𝑥 + 𝑎 we know 

𝑑𝑦

𝑑𝑥
=
𝑏−𝑎

𝑑
. 

In turn this tells us 𝑑𝑥 =
𝑑

𝑏−𝑎
∙ 𝑑𝑦. 

Also, going vertically, the limits are from 𝑎 → 𝑏! 

The integral becomes 

𝑅 = ∫
𝜌 

𝑑
𝑏 − 𝑎

∙ 𝑑𝑦

𝑐𝑦

𝑏

𝑎

 

𝑹 =  
𝝆𝒅

𝒄(𝒃 − 𝒂)
𝐥𝐧
𝒃

𝒂
 

I’ve seen this trick work for a huge number of these resistance integrals…or just U-sub it…you get the same thing. 

𝑑 

𝑏 

𝑎 

𝑥 
𝑑𝑥 

𝑐 



26.21 Determining the function (in part a) is probably more useful to your career than as exam practice. 

a) We are told the height function varies parabolically. 

𝑦 = 𝑘0 + 𝑘1𝑥 + 𝑘2𝑥
2 

Here 𝑘0, 𝑘1, & 𝑘2 are constants. 

We are told the minimum occurs at the left face. 

If you are clever, you might recognize by symmetry 𝑘1 = 0 and thus 𝑘0 = 𝑎 and from there find 𝑘2 =
𝑏−𝑎

𝑑2
. 

If you are not clever, grind it out. 

We know the following: 

i. 𝑦 = 𝑎 when 𝑥 = 0 

ii. 𝑦 = 𝑏 when 𝑥 = 𝑑 

iii. 𝑦′ = 0 when 𝑥 = 0 

From each bullet, you get an equation. 

There should be three equations to figure out the three unknown constants. 

 

Using bullet i:     𝑎 = 𝑘0 + 𝑘1(0) + 𝑘2(0)
2 which gives 𝑘0 = 𝑎 

Using bullet iii:   0 = 𝑘1 + 𝑘2(0)
2 which gives 𝑘1 = 0 

Using bullet ii:    𝑏 = 𝑎 + 𝑘2𝑑
2…which gives 𝑘2 =

𝑏−𝑎

𝑑2
 

 

Notice one finds  

𝑦 = 𝑎 +
𝑏 − 𝑎

𝑑2
𝑥2 

It would be foolish to proceed without checking this formula works for both 𝑥 = 0 & 𝑥 = 𝑑 (it checks out). 

Part b starts on the next page… 

  



b) The integral becomes 

𝑅 = ∫
𝜌 𝑑𝑥

𝑦𝑐

𝑑

0

= ∫
𝜌 𝑑𝑥

(𝑎 +
𝑏 − 𝑎
𝑑2

𝑥2) 𝑐

𝑑

0

 

In real life, you probably go straight to an online integrator at this point. 

Note: if we persist with our trick (switch from an x integral to a y integral) I believe it is also pretty easy to solve 

with a table.  As is it is cumbersome but probably doable with a table as well. 

 

Sub out 𝑑𝑥 using 

𝑑𝑦

𝑑𝑥
= 2

𝑏 − 𝑎

𝑑2
𝑥 

𝑑𝑦

2
𝑏 − 𝑎
𝑑2

𝑥 
= 𝑑𝑥 

Because 𝑦 = 𝑎 +
𝑏−𝑎

𝑑2
𝑥2we can invert to find 𝑥 = (

𝑑2

𝑏−𝑎
)

1

2
(𝑦 − 𝑎)1/2 

This gives 

𝑅 =
𝜌𝑑

2𝑐√𝑏 − 𝑎
 ∫

 𝑑𝑦

𝑦(𝑦 − 𝑎)1/2

𝒃

𝒂

 

Yeesh…table time…(notice the limits now correspond to the 𝑦-axis limits). 

Maybe straight up is better after all… 

𝑅 = ∫
𝜌 𝑑𝑥

(𝑎 +
𝑏 − 𝑎
𝑑2

𝑥2) 𝑐

𝑑

0

 

𝑅 = ∫
𝜌 𝑑𝑥

𝑏 − 𝑎
𝑑2

(
𝑑2

𝑏 − 𝑎
𝑎 + 𝑥2) 𝑐

𝑑

0

 

𝑅 =
𝑑2𝜌

𝑐(𝑏 − 𝑎)
∫

 𝑑𝑥

(𝑥2 +
𝑑2

𝑏 − 𝑎
𝑎)

𝑑

0

 

Now let 𝑐𝑟𝑎𝑝2 =
𝑑2

𝑏−𝑎
𝑎 

𝑅 =
𝑑2𝜌

𝑐(𝑏 − 𝑎)
∫

 𝑑𝑥

(𝑥2 + 𝑐𝑟𝑎𝑝2)

𝑑

0

 

Using a table gives 

𝑅 =
𝑑2𝜌

𝑐(𝑏 − 𝑎)
[
1

𝑐𝑟𝑎𝑝
tan−1 (

𝑥

𝑐𝑟𝑎𝑝
)]
0

𝑑

 

Since tan−1 0 = 0 

𝑅 =
𝑑2𝜌

𝑐(𝑏 − 𝑎)
∙
1

𝑐𝑟𝑎𝑝
tan−1 (

𝑑

𝑐𝑟𝑎𝑝
) 

𝑅 =
𝑑2𝜌

𝑐(𝑏 − 𝑎)
∙

1

√ 𝑑2

𝑏 − 𝑎
𝑎

tan−1

(

 
𝑑

√ 𝑑2

𝑏 − 𝑎
𝑎)

  

𝑹 =
𝒅𝝆

𝒄√𝒂(𝒃 − 𝒂)
𝐭𝐚𝐧−𝟏 (√

𝒃 − 𝒂

𝒂
) =

𝒅𝝆

𝒄𝒂√(
𝒃
𝒂
− 𝟏)

𝐭𝐚𝐧−𝟏 (√
𝒃

𝒂
− 𝟏) 

The second form might help when checking units. 



Part c) After checking the units, I worried about what happens as 𝑎 → 0. 

The resistor becomes infinitely skinny and resistance should trend to infinity. 

I used an online program to verify the limits made sense for both 𝑎 → 0 and 𝑏 → 𝑎. 

Think: what should the resistance be if 𝑏 = 𝑎?  It should be very simple to compute without calculus… 

 

Part d) The cross sectional area is constant (which usually implies no calculus is necessary). 

HOWEVER, we must use calculus to determine this particular cross-sectional area! 

I guess that’s a trick question, right? 

Get the area using 𝐴 = ∫ 𝑑𝐴 = ∫ 𝑦 𝑑𝑥. 

Then shove into 𝑅 =
𝜌𝐿

𝐴
 where 𝐿 = 𝑐 and 𝐴 = ∫ 𝑦 𝑑𝑥 is the result of the integral. 

 

Part e) If resistivity is non-uniform, simply do 

𝑅 = ∫
𝜌 𝑑𝑥

𝑐 (
𝑏 − 𝑎
𝑑2

𝑥2 + 𝑎)

𝑑

0

 

At this point, one plugs in the equation for resistivity determined from the problem statement! 

 

 

 

 

 

 

 

 

 

 

  



26.21½ Since cross-sectional area varies between the two faces, we must integrate 

to determine resistance. 

𝑅 = ∫
𝜌 𝑑𝑠

𝐴

𝑓

𝑖

 

In this coordinate system, current travelling left to right indicates current travels 

along the 𝑦-axis.  Therefore 𝑑𝑠 = 𝑑𝑦. 

 

The cross-sectional area is square but the side length of the square grows linearly. 

Notice the dashed purple line in the lower figure along the top edge of the prism. 

Hopefully it makes sense why I would choose to write the equation 

𝑧 = 𝑠𝑙𝑜𝑝𝑒 ∙ 𝑦 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

Notice I used 𝑧 & 𝑦 instead of 𝑦 & 𝑥 because of the orientation of the coordinate 

system in the lower figure at right. 

 

Notice 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =
𝑎

2
 while  

𝑠𝑙𝑜𝑝𝑒 =
𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
=
𝑎 −

𝑎
2

𝐿
=
𝑎

2𝐿
 

Plugging in gives 

𝑧 =
𝑎

2𝐿
𝑦 +

𝑎

2
 

 

Notice the area of an arbitrary face at some random location in the prism is  

𝐴 = (2𝑧)2 = (2 (
𝑎

2𝐿
∙ 𝑦 +

𝑎

2
))

2

= (
𝑎

𝐿
∙ 𝑦 + 𝑎)

2

 

Think: you should not use area 𝑎2 (or 4𝑎2)…the area of the left (or right) face is not representative of an arbitrary 

slice of the prism.  From here, plug everything in: 

𝑅 = ∫
𝜌 𝑑𝑦

(
𝑎
𝐿
𝑦 + 𝑎)

2

𝐿

0

 

Notice the units correspond to distance along the 𝑦-axis (along the direction of current flow). 

I notice we could use 

𝑢 =
𝑎

𝐿
𝑦 + 𝑎   →      𝑑𝑢 =

𝑎

𝐿
𝑑𝑦   →      𝑑𝑦 =

𝐿

𝑎
𝑑𝑢 

I also switch the limits by noting 𝑢 = 𝑎 when 𝑦 = 0 and 𝑢 = 2𝑎 when 𝑦 = 𝐿. 

𝑅 = ∫
𝜌 
𝐿
𝑎
𝑑𝑢

𝑢2

2𝑎

𝑎

 

𝑅 =
𝜌𝐿

𝑎
[−
1

𝑢
]
𝑎

2𝑎

 

𝑹 =
𝝆𝑳

𝟐𝒂𝟐
 

  

𝑥 
𝑦 

𝑧 

𝑧 

𝑦 
𝑎 

2𝑎 

𝐿 

Slanted Side View 

Pure Side View 



26.21¾  

Part a: Determine the units of the constant 

[𝜌] = [𝛽][𝑦2]   →     [𝛽] =
[𝜌]

[𝑦2]
=
Ω ∙ m

m2
=
𝛀

𝐦
 

Part b: In this problem the cross-sectional area is constant but resistivity is non-uniform.  We must integrate to 

determine resistance. 

𝑅 = ∫
𝜌 𝑑𝑠

𝐴

𝑓

𝑖

 

Here I will pull out the constants early.  In particular, 

since area is constant we can pull that out right away 

this time. 

𝑅 =
1

𝐴
∫ 𝜌 𝑑𝑦
𝐿

0

 

I suppose we should use the given parameters to 

determine the area (see end view figure above). 

I will compute it now but not plug it in until after the 

integral to reduce time spent writing it repeatedly. 

𝐴 =
1

2
𝑏𝑎𝑠𝑒 × ℎ𝑒𝑖𝑔ℎ𝑡 =

1

2
𝑎ℎ =

𝑎2

4 tan
𝜙
2

 

𝑅 =
1

𝐴
∫ 𝛽𝑦2 𝑑𝑦
𝐿

0

 

𝑅 =
1

𝐴
𝛽∫ 𝑦2 𝑑𝑦

𝐿

0

 

𝑅 =
1

𝐴
∙
𝛽𝐿3

3
 

Think: always check the zero limit.  In this case it drops out. 

𝑅 =
4 tan

𝜙
2

𝑎2
∙
𝛽𝐿3

3
 

Before plugging numbers into a calculator to make it look pretty, I check the units (looks good). 

𝑹 = 𝟎. 𝟒𝟖𝟓
𝜷𝑳𝟑

𝒂𝟐
 

 

 

   

𝑥 
𝑦 

𝑧 

𝑎

2
  

Slanted Side View End View 

𝐿 

ℎ 

tan
𝜙

2
=
  
𝑎
2
  

ℎ
 

ℎ =
𝑎

2 tan
𝜙
2

 



26.22 & 26.23  I’d watch this video first to get a feeling for these two problems. 

https://www.youtube.com/watch?v=UM8Ow5w8Cs8&list=PLBQTyyPKj9WbIWdZMnPQeUwedY2u3lrxt 

We will learn more about the differences between alternating current (AC) & direct current (DC) later. 

Fortunately, resistor only circuits used with AC power (plugged into a wall socket) have computations nearly 

identical to DC circuits (plugged into a battery).  With old incandescent light bulbs, the circuit is essentially a long 

skinny wire inside a piece of glass.  These bulbs can be modeled very well as simple resistors. 

 

In a standard household circuit, the entire 120 V 

potential difference is applied to each bulb (shown 

in the figure at right).  Note: in this simple case, the 

power rating directly corresponds to brightness. 

 

In question 26.22, we are asked to wire them in series as shown in the figure at 

right.  Notice something is very different now!  Because the bulbs are in series, 

neither bulb gets the full 120 V potential difference of the source!  As a result, 

the ratings for wattage on each bulb are no longer accurate! 

 

To understand the lower figure, first use the upper figure to figure out the 

resistance of each bulb. 

We know two equations: 

Power Ohm’s Law 

𝒫 = 𝑖Δ𝑉 Δ𝑉 = 𝑖𝑅 

In the upper figure we know power & voltage and want to learn about resistance. 

It makes sense to use these two equations to eliminate current. 

𝒫 = 𝑖Δ𝑉 = (
Δ𝑉

𝑅
)Δ𝑉 =

Δ𝑉2

𝑅
 

𝑅 =
Δ𝑉2

𝒫
 

In the upper figure, we see the two bulbs have the same voltage applied (120 V each). 

The resistances are 𝑅40 W = 360 Ω & 𝑅100 W = 144 Ω. 

 

In the lower figure, the two resistors ins series have total resistance 𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅40 W + 𝑅100 W = 504 Ω. 

Since we know total resistance and voltage, we can determine current. 

𝑖 =
Δ𝑉

𝑅𝑡𝑜𝑡𝑎𝑙
= 238.1 mA 

Since these resistors are in series, we know they share the same current. 

Since we know resistance & current, we can determine power (which corresponds to brightness). 

This time it makes sense to eliminate voltage from our two equations. 

𝒫 = 𝑖Δ𝑉 = 𝑖(𝑖𝑅) = 𝑖2𝑅 

Now we can figure out the power deliverd to each bulb in the series circuit (lower figure). 

𝒫40 W = (238.1 mA)
2(360 Ω) = 20.4 W 

𝒫100 W = (238.1 mA)
2(144 Ω) = 8.16 W 

Notice the bulb labeled “40 W” is delivered about 20 W while the bulb labeled “100 W” is delivered about 8 W.  

The 40 W bulb is brighter when the two bulbs are placed in series!!!!! 

 

Note: in real life, changing the circuit to a series circuit (lower figure) also affects operating temperature.  When 

temperature is factored in, the smaller bulb gets even brighter!  This problem is supposed to motivate you to 

transition into the next chapter where resistor circuits are discussed in greater detail. 

120 V 40 W 120 V 100 W 

120 V 

40 W 

100 W 

https://www.youtube.com/watch?v=UM8Ow5w8Cs8&list=PLBQTyyPKj9WbIWdZMnPQeUwedY2u3lrxt&index=1
https://www.youtube.com/watch?v=UM8Ow5w8Cs8&list=PLBQTyyPKj9WbIWdZMnPQeUwedY2u3lrxt


26.24 Note: I cover series versus parallel rules for resistors in the next chapter in great detail. 

Now to the solution solution (ha.): 

In the first case we know  

𝒫 = 𝑖Δ𝑉 

𝒫 = (
Δ𝑉

𝑅
)Δ𝑉 

𝒫 =
Δ𝑉2

𝑅
 

We don’t know source voltage but we can give that source voltage a name. 

Because the second circuit has the same unknown source voltage, it should drop out 

in a ratio! 

Each resistor in parallel with the source has the same potential difference as the 

source. 

𝒫 =
ℰ2

𝑅
 

Total power delivered to both cylinders is thus 

𝒫𝑡𝑜𝑡𝑎𝑙 𝑏𝑒𝑓𝑜𝑟𝑒 = 2
ℰ2

𝑅
 

 

In the second case, resistivity in one resistor has dropped by 25%. 

Recall 𝑅 =
𝜌𝐿

𝐴
…resistance is directly proportional to resistivity. 

This implies resistance also drops by 25%. 

Dropping by 25% is the same as saying 𝑅′ = 0.75𝑅 (𝑅′ is75% of original value). 

The same power equation applies to the modified resistor. 

𝒫′ =
ℰ2

𝑅′
=

ℰ2

0.75𝑅
= 1.333

ℰ2

𝑅
 

Total power in the second case is thus 

𝒫𝑡𝑜𝑡𝑎𝑙 𝑎𝑓𝑡𝑒𝑟 =
ℰ2

𝑅
+ 1.333

ℰ2

𝑅
= 2.333

ℰ2

𝑅
 

 

We are asked to find the ratio of power after to power before: 

𝒫′

𝒫
=
  2.333

ℰ2

𝑅
  

2
ℰ2

𝑅

 

𝓟′

𝓟
= 𝟏. 𝟏𝟔𝟕 

Dropping the resistivity of a single cylinder increases power delivered by about 17%. 

In the real world, there are occasions where resistivity measurements are used in practical settings. 

While this particular problem seems contrived, it relates to these practical techniques. 

One example: geologists can use resistivity measurements to determine the subsurface structure of a plot of land 

before anyone wastes time and money digging. 

Another example: use resistivity (or conductivity) measurements to estimate Total Dissolved Solids (TDS) in water. 

Many other applications can be found in electrical engineering. 

ℰ 

𝑅 

Before 

𝑅′ 

After 

𝑅 

ℰ 

𝑅 


